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AbstratIn reent years the extraordinary behaviour in ondensed matter materials suh as hightemperature superondutors and heavy fermions has attrated muh attention. Attemptsto understand it are mostly based on loal and lattie models of strongly orrelated ele-trons. These systems show a rih behaviour with states of broken symmetry. In the strongoupling regime the relevant models are, however, not easy to understand with standardperturbative approahes. Renormalisation group methods in ontrast onstitute a reli-able approah to desribe these strong orrelation e�ets. The objetive of this thesis isto ontribute to (a) the development of renormalisation group methods for states withbroken symmetry and (b) the desription of the low energy properties for ertain spei�symmetry breakings.The alulations presented are based on the Anderson impurity model (AIM) andthe Hubbard model. We develop and apply the numerial renormalisation group (NRG)and the renormalised perturbation theory (RPT). The extension of these methods fromthe loal model to the lattie model is within the dynamial mean �eld theory (DMFT)framework. First we fous on the appliation of NRG and RPT to loal models. We studymagneti symmetry breaking in the AIM in equilibrium and non-equilibrium. This inludesalulating dynami response funtions and all relevant quasipartile parameters. We alsoinvestigate the AIM with superonduting symmetry breaking in the medium. The analysisis then extended to in�nite dimensional lattie models by using the DMFT approah. Thus,results are presented for �eld indued magneti ordering and antiferromagneti symmetrybreaking in the Hubbard model. We also give a preliminary study of the rossover fromweak to strong oupling in the attrative Hubbard model with superonduting symmetrybreaking.
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Introdution
There is a theory whih states that if everanyone disovers exatly what the Universeis for and why it is here, it will instantlydisappear and be replaed by somethingeven more bizarre and inexpliable.There is another theory whih states thatthis has already happened. Douglas Adams

In many �elds of researh, ranging from soiology over �nane to biology and physis,a fundamental onept is that of orrelations between ertain entities. When analysingertain events, or the behaviour of a system in terms of its onstituents, one often asksto what degree the subunits of the system are orrelated and what the impliation of theorrelations are. In many ases in nature, the fundamental behaviour of an isolated on-stituent is rather unspetaular, whereas the olletive behaviour of the whole system anshow remarkable features. For illustration onsider a living organism based on individualells or a magnetially ordered state formed from itinerant eletrons. That suh an organ-ised state persists in spite of omnipresent natural �utuations an often be understood interms of orrelated behaviour.This thesis deals with many-body systems in the �eld of ondensed matter physis.There, models of strongly orrelated eletrons have attrated an enormous amount ofattention in the last four deades. A number of materials, suh as heavy fermions, hightemperature superondutors and mesosopi systems like quantum dots, show behaviourwhih an only be explained when strong loal interations are taken into aount. Thesestrong eletroni interations an be of various kinds, suh as diret Coulomb interationsor mediated by exhange bosons, for instane lattie phonons. At low temperature, whenthere are few thermal �utuations, the quantum mehanial behaviour of these many-bodysystems is most visible. Then they an assume a large variety of di�erent states, suh asa normally onduting or insulating state, they an spontaneously order magnetially andalso beome superonduting. It is this variety of phases with broken symmetry, whihmakes these systems so interesting to study. The appearanes of these di�erent phasesan often be understood in terms of the high degree of orrelation of the partiles. Asmall hange in a parameter an alter the state of the system ompletely. Along ertainaxes in the relevant parameter spae, zero temperature quantum phase transitions an beobserved. The rih phase diagram of many of these systems is due to the deliate interplayof kineti and potential energy as well as that of harge and spin �utuations. Often it is ahallenge to identify the dominant mehanism that drives the system into a ertain state.Before introduing the spei� models to desribe these systems of strongly orrelatedeletrons, we outline a few general onsiderations. It is remarkable that - as realisedin the 1920s and 1930s - in spite of the generally large Coulomb repulsion between two



2 Introdutioneletrons in a solid state system at short distanes, many metals are exeptionally welldesribed by a gas of non-interating fermions. Experimental studies showed that theeletri and magneti response of these materials is essentially that of a Fermi gas, however,with e�etive parameters, slightly renormalised from their bare value. This phenomenonould be understood through ideas dating bak to Landau (1957), who saw that a naturalextension of the Fermi gas is a Fermi liquid, whih at low temperature shows exitationsof similar nature to the Fermi gas, albeit with renormalised parameters. The Fermi liquidthus is an e�etive desription of an interating system. One of the main ideas is thatthe low energy exitations are in a one to one orrespondene with the original eletroniexitations. This desription applies well for itinerant, metalli systems, suh as opper,but is even valid for insulators, where the band struture is suh that the Fermi energy fallsinto the gap. One reason that this works so well is not that the Coulomb energy for twoeletrons is a small as ompared to the kineti energy, but that the positive bakgroundharge leads to a sreening of the interation. Suh a piture emerges most naturally forlargely overlapping atomi orbitals, whih lead to wide ondution bands. The situationhanges, however, if the itinerant eletrons belong rather to more loalised orbitals, suh asin transition metals. Here the interation plays a signi�ant role if two or more eletronsoupy the same orbital. This leads to strong orrelation e�ets, and as a result it anhappen that a material with a half �lled band is atually an insulator beause of theinteration - this possibility was �rst pointed out by Mott (1949, 1968). It is remarkablethat the quasipartile exitations of many of these strongly orrelated systems are still wellharaterised by Landau's Fermi liquid theory.In the 1960s various simple models for suh situations were introdued. One model,whih is of paramount importane for ondensed matter studies, is the Anderson impuritymodel (Anderson 1961). It desribes an atomi orbital (impurity) in whih loal Coulombinterations play an important role. It is surrounded by a non-interating band of eletrons,whih hybridises with this impurity. In the simplest ase the impurity does not havedegenerate states (s-orbital) and an therefore maximally be oupied by two eletrons withopposite spin. The Anderson impurity model has served as a sensible model for physisof dilute impurities in metals and forms the basis for understanding the elebrated Kondoe�et. It has been the subjet of many theoretial studies and is aepted as the standardmodel of loally strongly orrelated eletron systems. It has attrated renewed attentionin reent years, sine it an be onsidered as an appropriate model for the desription ofnanosale quantum dot systems in ertain instanes.A model whih takes into aount loal Coulomb interations on every site of a lattieis the Hubbard model. This model was motivated by desribing the basi magneti andeletri properties of ondensed matter materials in the 1960s. For real materials it ismaybe too simpli�ed, but up to the present date it is one of the most important models forstudying strong orrelation e�ets in matter. Revived interest in the model was generatedby the disovery of high temperature superondutors in the 1980s and more reently by



3old atomi gas systems in optial lattie, whih apart from an additional on�nementpotential have all the harateristis of the Hubbard model. For this thesis the Hubbardmodel is onsidered as the standard lattie model of strong eletron orrelations, whih dueto its rih phase diagram is worthwhile to study in detail. Moreover, it is, as the Andersonimpurity model, a good testing ground for methods of di�erent kinds.The simpliity of these models is both an advantage and a drawbak. The �rst sineit allows for a fairly simple analysis in terms of few parameters, and yet a rih behaviourin terms of broken symmetry phases an be explored. The obvious drawbak is that inorder to model �real systems� and ompare to experimental measurements other e�etssuh as orbital degeneraies, disorder, nearest neighbour interation, lattie phonons, et.have to be taken into aount. Some of these extensions an be inorporated withoutmajor di�ulties, whereas for others the methods we desribe here beome inappliable inpratie. We want to stress that the purpose of this work is not to explain the propertiesof a partiular material. It is rather to disuss generi strong orrelation e�ets and thedevelopment of reliable methods. The emphasis for this is to inlude symmetry breakinge�ets, sine they lead to very interesting behaviour harateristi for these materials withstrongly orrelated eletrons.In physis, a onept of paramount importane to understand the state of matter is thatof symmetry breaking. The onept is ubiquitous from osmology and the generation ofmatter over high energy physis and the fundamental interations to the well known asesin ondensed matter physis suh as magneti ordering, superondutivity or simply theatual ondensation from gas to �uid and solid state ordered form. Generally, most systemsare invariant under a larger group of symmetry transformations at high temperature. Thisis quite intuitive as strong thermal �utuations tend to wash out any symmetry breakingstruture. At low temperature, however, it is possible to stabilise a ertain state, suh asa ferromagneti ordering whih in turn breaks the rotational invariane. It is important tonote that the interations of the partiles are very important for an ordering transition. Inother words a non-interating system of fermions does not order even at zero temperatureand simply remains a Fermi gas with the orresponding oupation rules. This is di�erentfor bosons, whih undergo Bose-Einstein ondensation at low temperature. For a non-interating system of bosons, however, no truly super�uid state is adopted. In this thesiswe deal with systems of strongly interating fermions mostly at low temperature. It istherefore to be expeted that a number of symmetry breakings an our. Symmetrybreaking does not neessarily our spontaneously for a ertain temperature. We analso bring a system into an ordered state by applying an external �eld whih breaks thesymmetry. The simplest ase in the ontext of strongly orrelated eletrons systems is tosubjet the system to a magneti �eld and study its paramagneti response.The strongly interating nature of the eletrons in these models poses severe di�ultiesfor an aurate analysis of their behaviour. Sine the potential energy is by no means smallompared to the kineti energy, it is more than questionable to analyse these models in



4 Introdutionterms of standard, weak oupling, perturbative methods. Therefore, theoretial researhhas foused on the development of non-perturbative methods suh as numerial tehniqueslike exat diagonalisation or Quantum Monte Carlo. Due to the exponential inrease ofthe underlying Hilbert spae the appliation of these is, however, often limited to fairlysmall system sizes. Another lass of non-perturbative methods are renormalisation group(RG) approahes, whih were �rst developed in the 1960s and 70s, and have ontributedto the understanding of many strong oupling problems. Essentially one generates a trans-formation by whih the system is onsidered on di�erent energy sales, and studies thebehaviour for suessive appliations of the transformation. This transformation is usu-ally invoked by integrating out high energy degrees of freedom. One major aim is theidenti�ation and haraterisation of di�erent low energy �xed points. This thesis fouseson the appliation and development of the RG methods numerial renormalisation group(NRG) and renormalised perturbation theory (RPT). Both are diretly appliable to theAnderson impurity model (AIM). In the beginning of the 1990s it was shown that in thelimit of large dimensions the Hubbard model an be desribed by an e�etive AIM, whihhas to be determined self-onsistently within the dynamial mean �eld theory (DMFT)framework. With the help of the DMFT we an therefore use RPT and NRG to study theHubbard model and ertain symmetry breakings.Having introdued the relevant topis we an formulate the main goal of this thesis.The objetive of the work is twofold:1. Advanement of Methods, i.e. to ontribute to the development of the RG meth-ods NRG and RPT and their extension to ases with symmetry breaking.2. Physial insight, i.e. we want to understand the low energy behaviour of thesesystems of strongly orrelated eletrons in states with broken symmetry.The main unifying question of this thesis an then be stated:
• What are the properties of the quasipartile exitations of strongly orrelated fermionsin loal and lattie models subjet to ertain symmetry breakings and how an weanalyse them?Figure 1 gives an overview of the struture and ontents of the thesis in terms of models,methods and appliations. The thesis is divided into three parts. The �rst introdues themodels and methods, the seond disusses results for the loal models, and in the thirdpart results for the lattie models are presented. On the top of �gure 1 we an see the twotypes of models under onsideration. In pratie, we will study the AIM as an impuritymodel and the Hubbard model as a lattie model. We will give a brief introdution to themin hapter 1, establishing the neessary notation. The analysis is in terms of a ombinationof the RPT and NRG methods whih are linked to the orresponding appliation (box in�gure 1) by a line. These methods as well as the DMFT are brie�y introdued in hapter
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PSfrag replaements

Impuritymodels Lattie modelsDMFT
NRGKeldysh

Spin hannelSpin hannel Charge hannelQuantum dotQuantum dot Quantum dotSC bath(Equilibrium) (Nonequilibrium) Corr. ferm.Corr. ferm.Corr. ferm. Magneti �eldMagneti �eld Magneti �eld AFM orderingSC orderingBCS-BEC-rossover (Chapter 3) (Chapter 4) (Chapter 5) (Chapter 6) (Chapter 7)(Chapter 8)NRGRPTFigure 1: Sheme of relevant models, methods and their range of appliation.2. Chapter 1 and 2 form the �rst part of the thesis. In the seond part we study two typesof symmetry breaking in the AIM, in the spin and in the harge hannel. The AIM doesnot possess a spontaneously ordered state so the ordering is an indued one. In the spinhannel we study the in�uene of a magneti �eld, whih is the subjet of hapter 3. Itwill turn out that in order to desribe measurements of the urrent in quantum dot systemin a magneti �eld, the theory has to be extended to non-equilibrium and a two hannelmodel, whih is the fous of hapter 4. The following hapter 5 onsiders a symmetrybreaking in the harge hannel. The bath of the model is given by a BCS superondutorthere, and we study the e�et of this on the impurity. The third part of the thesis dealswith orrelated fermions in the lattie model. First we study symmetry breaking in thespin hannel. Chapter 6 deals with �eld indued magneti ordering in the Hubbard model.Spontaneous antiferromagneti ordering in the doped lattie system is analysed in hapter7. In hapter 8 we onsider symmetry breaking in the harge hannel and fous spei�allyon spontaneous superonduting order in the attrative model.Let us antiipate some of the main results of this work. For the loally orrelatedsystems with magneti symmetry breaking we will see that a desription in terms of �elddependent renormalised parameters allows one to haraterise the free quasipartiles andmany stati response quantities, the low temperature response, the low energy dynamisand the behaviour in small but �nite voltage. With the renormalised perturbation expan-sions we an extend the analysis to higher energies and voltages, and it proves very usefulto base the onsiderations on the �eld dependent renormalised parameters. We also disuss



6 IntrodutionNRG results for stati and dynami quantities in the equilibrium ase, and the omparisonwith orresponding results from RPT alulations gives good agreement. We show thatthe situation for an impurity in a BCS superondutor an be desribed aurately withthe NRG method. In the loally repulsive ase the lowest exitations orrespond to boundstates in the superonduting gap and we give an aurate desription of their positionand weight. We also analyse the ground state transition whih ours with hanging thesystem parameters, and present results for spetral funtions.In the third part of the thesis we fous on the symmetry breaking in lattie modelswithin the DMFT desription. When studying the paramagneti response of the Hubbardmodel to a homogeneous magneti �eld in terms of stati and dynami response funtions,we �nd regimes with qualitatively di�erent behaviour. At half �lling we observe metam-agneti behaviour aompanied by a �eld indued metal insulator transition. In the dopedase no metamagneti behaviour ours, but the spin dependent e�etive masses of thequasipartiles di�er markedly. As for the loal models the desription in terms of quasi-partiles with �eld dependent renormalised parameters proves to be useful here. We alsogive a detailed analysis of the nature of the renormalised quasipartile in a metalli anti-ferromagnet and develop an aurate desription of the renormalised quasipartile bands.Renormalised parameters an be dedued as before, but the symmetry breaking natureleads to expressions for the spetral quasipartile weight and the e�etive mass enhane-ment di�erent from the ones in the normal state. For the attrative system we study thebroken symmetry state with superonduting order. We show that the rossover of statiquantities and spetral funtions from the BCS superonduting regime at weak ouplingto the BEC regime of tightly bound fermions at strong oupling ours smoothly.The author is aware that the thesis is of onsiderable length. As a variety of di�erentissues are addressed, it seemed di�ult in the preparation to restrain the length of thedoument without loosing larity in the exposition. However, as muh of the disussionof the results in eah hapter is self-ontained, apart from linking remarks and ommonmethods, the reader is enouraged to fous seletively on topis of personal preferene.



Part IModels and Methods





Chapter 1Models of strongly orrelatedeletrons

The art of the model-building is the ex-lusion of real but irrelevant parts ofthe problem, and entails hazards for thebuilder and the reader.Philip W. Anderson

In this hapter we introdue the details of the models relevant for this thesis. First wedisuss the Anderson impurity model, its basi behaviour and parameter ranges. The sym-metries of the model are identi�ed and it is shown how the attrative and repulsive modelare related by a mapping. Similarly, the Hubbard model, its parameters and behaviour inlimiting ases are introdued. We disuss symmetries, symmetry breaking terms and themapping from the attrative to the repulsive model.1.1 The Anderson Impurity Model (AIM)1.1.1 General features and model parametersHistorially the Anderson impurity model (AIM) was proposed in order to desribe metalswith magneti impurities in a simpli�ed mirosopi model. The Hamiltonian of the AIMis given by (Anderson 1961)
HAnd =

∑

k,σ

εkc
†
k,σck,σ +

∑

σ

εdc
†
d,σcd,σ +

∑

k,σ

Vk(c†
k,σcd,σ + h.c.) + Uc†d,↑cd,↑c

†
d,↓cd,↓. (1.1)The model desribes an impurity (d-site) with energy εd in a metalli bath with dispersion

εk. There is a hopping term from the bath to the impurity site whose amplitude is har-aterised by the parameter Vk. This term leads to a hybridisation between the bath andthe impurity level. The last term is the on-site interation with strength U . The spin label
σ here and in the rest of this thesis assumes values σ = ±1 and therefore the impurityorresponds to an s-orbital. In many situations where an impurity in metal is modelled ahigher orbital degeneray (d- or f-orbital) would be more realisti. In this work we will,however, fous on the singly degenerate ase. In the following we brie�y establish somesimple features and terminology ommonly used. Unless otherwise stated we will assume



10 Models of strongly orrelated eletronsthroughout the ourse of this work that the Fermi energy εF is at zero energy, εF = 0. For
εd = −U/2 and for a half �lled ondution band the Hamiltonian (1.1) is invariant underthe partile hole transformation

cd,σ ↔ −c†d,σ ck,σ ↔ c†−k,σ. (1.2)Hene, this ase is termed partile hole symmetri ase or simply symmetri AIM. We willalso refer to it as half �lled ase in analogy to the orresponding lattie situation. Withouthybridisation, Vk → 0, the model an be trivially solved (atomi limit) and the ground-state energy E0 only depends on the impurity eletroni oupation nd. For nd = 0 wehave E0 = 0, for single oupation, nd = 1, E0 = εd, and the doubly oupied impurity hasenergy E0 = 2εd +U . We an see that for the symmetri AIM zero and double oupationare degenerate and if εd < 0 the lowest energy is given by the singly oupied state. For
U > 0 therefore the ground state is singly oupied. This argument an be extended in asimpli�ed piture to the ase with �nite hybridisation, Vk 6= 0. The delta-funtion atomilimit peak is then broadened by the hybridisation with the ondution band.In the non-interating ase, U = 0, the model an be solved with the Green's funtionstehnique as already done in the original work by Anderson (1961). From the equations ofmotion we �nd the Fourier transform of the retarded impurity Green's funtion at T = 0,

Gd(ω) = 〈〈cd,σ ; c†d,σ〉〉ω = −i
∞
∫

−∞

dt e−iωtθ(t)〈{cd,σ(t), c†d,σ(0)}〉. (1.3)The expliit expression for U = 0 is
G0

d(ω) =
1

ω+ − εd −K(ω)
, (1.4)where ω+ = ω + iη, η → 0. K(ω) is generally referred to as the hybridisation funtion.With the Dira identity

1

x± iη
= P 1

x
∓ iπδ(x) (1.5)the hybridisation term in the denominator beomes

K(ω) =
∑

k

|Vk|2
ω + iη − εk

= P
∑

k

|Vk|2
ω − εk

− iπ
∑

k

|Vk|2δ(ω − εk) ≡ Λ(ω) − i∆(ω). (1.6)In the AIM it is ommon to assume a �at ondution band density of states (ρc ≡ 1/2D)and a broad band (εk ∈ (−D,D), where D is the largest parameter in the problem). Thenfor the usual range of ω the real part of the expression Λ(ω) ≃ ∆(0) ln(ω−D
ω+D ) is smalland an be negleted or absorbed in a renormalisation of εd [for a disussion see (Hewson1993a, hapter 1)℄. Approximating the hybridisation by the value at the Fermi level,

Vk ≃ VkF
≡ V , ∆(ω) = πρc(0)V

2 = πV 2/2D ≡ ∆ independent of ω, whih will be usedthroughout this thesis, when the loal model is onsidered. In the DMFT framework we



1.1 The Anderson Impurity Model (AIM) 11have to onsider an e�etive impurity model and the hybridisation funtion K(ω) retainsits frequeny dependene. Here for the impurity model, however, we �nd the simpli�edexpression for (1.4)
G0

d(ω) =
1

ω+ − εd + i∆
, (1.7)whih is what is ommonly used as the free retarded Green's funtion for the AIM. Theorresponding spetral funtion ρ0

d(ω) = −ImG0
d(ω)/π is a Lorentz urve entred at εdwith half width at half maximum (HWHM) ∆,

ρ0
d(ω) =

∆/π

(ω − εd)2 + ∆2
. (1.8)It is therefore lear to see that the hybridisation broadens the loal level εd in the spetraldensity. From the atomi limit analysis we have another level at energy εd + U , whih isalso found to be broadened by the hybridisation. Based on these onsiderations we andistinguish the followingParameter regimes:1. The loal moment regime, where εd ≪ εF and |εF − (εd + U)| ≫ ∆, onstitutes asingly oupied impurity with a spin (loal moment) oupling to the ondution bath.In this regime harge �utuations on the impurity site are largely suppressed, anda transformation by Shrie�er and Wol� (1966) to the Kondo model is appliable.The interation term then has the form

Hint =
∑

k,k′

Jk,k′[S+c†k,↑ck′,↓ + S−c†k,↓ck′,↑ + Sz(c†k,↑ck′,↑ − c†k,↓ck′,↓)]. (1.9)
S is the impurity spin, Sα = c†d,σσ

(α)
σσ′cd,σ′ (α: Cartesian omponent), S± = S1± iS2.This is the regime, where Kondo physis is dominant at low temperature and thespetral density shows a narrow peak at the Fermi level.2. The intermediate valene regime where, |εd − εF| ≃ ∆ ≃ |εF − (εd + U)| and thus thetwo levels lie within the width of ∆. Real harge �utuations of eletrons hoppingon and o� the impurity are important in this regime.3. The non-magneti regime, εd−εF ≫ ∆, where it osts energy to oupy the impurity.This is the ase, for instane, in the symmetri model with attrative interation,

U < 0. The system is in this regime also for |εd − εF| ≫ ∆, |εF − (εd + U)| ≫ ∆,suh that the impurity is either always doubly oupied or empty.If we restrit ourselves to the symmetri model, εd = −U/2, a mean �eld analysis showsthat only the ratio U/π∆ is relevant for the haraterisation of the behaviour (Anderson1961). One �nds an instability towards a magneti solution for U/π∆ > 1. Although this



12 Models of strongly orrelated eletronsis an artefat and restored by �utuations it is ommon to distinguish the regimes by thisratio, i.e. a weak oupling regime for U/π∆ < 1, an intermediate oupling regime, U/π∆ ≃
1, and strong oupling regime, U/π∆ > 1. For large enough U , in pratie U/π∆ > 2,the last ase orresponds to the �rst regime mentioned above. An important quantity forthis regime is the Kondo temperature TK, whih an be de�ned for the symmetri modelas (Horvati and Zlati 1985)

TK =
√

(U∆/2)e−πU/8∆+π∆/2U . (1.10)It is the energy sale where the perturbation theory of Kondo (1964) diverges, and it isthe only relevant low energy sale. The ratio of the spin suseptibility of the impurity χsand the linear T oe�ient of the spei� heat γd, whih is referred to as Sommerfeld orWilson ratio,
R = 4πχs/3(gµB)2γd, (1.11)desribes the transition from weak oupling to Kondo behaviour; µB = e~

2me
is the Bohrmagneton. One has R = 1 for noninterating eletrons (weak oupling limit) and R = 2in the strong oupling ase.The low energy behaviour of the AIM an be expressed in terms of the renormalisedquasipartiles of a loal Fermi liquid, whih is desribed by a renormalised version of thesame model (Hewson 1993a,b),

H̃And =
∑

k,σ

εkc
†
k,σck,σ +

∑

σ

ε̃dc
†
d,σcd,σ +

∑

k,σ

Ṽk(c†
k,σcd,σ + h.c.)

+Ũ : c†d,↑cd,↑c
†
d,↓cd,↓ :, (1.12)where the olon brakets indiate that the expression within them must be normal-ordered.This Hamiltonian orresponds to the low energy �xed point of the Wilson numerial renor-malisation group transformation of the disretised Anderson and Kondo models, with theleading irrelevant terms (Wilson 1975, Krishna-murthy et al. 1980a, Hewson 1993a). Theadvantage of desribing the �xed point in this way, as a renormalised Anderson modelrather than as a strong oupling �xed point of the Kondo model, even in the strong orre-lation or Kondo limit, is that it learly brings out the 1-1 orrespondene of the low-lyingsingle partile exitations with those of the non-interating model (Hewson et al. 2004,Hewson 1993a, 2005). Furthermore, it is appliable in all parameter regimes, from weakto strong oupling and for all oupation values for the loal site. The e�etive level, ε̃d,the e�etive resonane width ∆̃ = πṼ 2/2D, and e�etive loal interation, Ũ , de�ne thequasipartiles of this renormalised model. A more rigorous de�nition of these renormalisedparameters in terms of the self-energy and vertex funtion is given in hapter 2. The freequasipartile density of states is given by replaing the bare parameters in (1.8) by therenormalised parameters ,

ρ̃0
d(ω) =

∆̃/π

(ω − ε̃d)2 + ∆̃2
. (1.13)



1.1 The Anderson Impurity Model (AIM) 13For partile hole symmetry ε̃d = 0, and the orresponding Lorentz peak ρ̃0
d(ω) desribesthe Kondo quasipartile resonane at the Fermi level.The spin suseptibility χs = χimp/(gµB)2 an be related to the renormalised parameters(Hewson 1993a)

χs =
ρ̃0

d(0)

2
[1 + Ũ ρ̃0

d(0)], (1.14)and sine the spei� heat oe�ient in Fermi liquid theory is given by
γd =

2π2

3
ρ̃0

d(0), (1.15)we an express the Wilson ratio (1.11) as
R = 1 + Ũ ρ̃0

d(0). (1.16)Sine the only one energy sale in the Kondo regime is TK, it possible to relate the renor-malised parameters to the Kondo temperature, and one �nds π∆̃ = Ũ = 4TK.Symmetries and symmetry breakingThe total spin operator of the system S =
∑

k Sk + Sd ommutes with the Hamiltonian(1.1) and due to this SU(2) symmetry the total spin is a onserved quantum number ofthe AIM. This is not the ase anymore if we ouple the eletrons to a magneti �eld Hextat the d-site. Conveniently, we hoose the �eld along the z-axis, Hext = Hzez suh thatthe oupling term is of the form H ′
mag = −µdHz = h(nd,↑ − nd,↓), where h := gµBHz

2 withthe eletroni g-fator. Suh a term implies that a positive magneti �eld dereases theenergy of a down spin eletron and thus favours an antiparallel alignment of the eletronsalong the �eld axis, as it is usually the ase in nature. Theoretially, it is, however slightlymore onvenient to have a magnetisation and �eld with the same sign and therefore it isommon to hoose
Hmag = −h(nd,↑ − nd,↓) = −h

∑

σ

σnd,σ, (1.17)a onvention we will omply with throughout this thesis. In the wide band ondutionlimit we an neglet any magneti �eld ating on the band eletrons. Any polarisationonly a�ets the impurity via the hybridisation ∆ and any hange to the ondution banddensity due to an applied �eld is only at the band edges (±D) and therefore negligible inthe wide band limit (Hewson et al. 2005). The AIM in magneti �eld is subjet of hapter3 and 4.The Hamiltonian of the AIM (1.1) is also invariant under a U(1) gauge transformationand therefore onserves the total partile number N =
∑

k,σ nk,σ + nd or harge. Thissymmetry is broken if the eletron bath is in a superonduting state rather than a metallistate. This situation will be subjet of the study in hapter 5.



14 Models of strongly orrelated eletrons1.1.2 The Spin-Isospin TransformationWe an map the symmetri AIM (U > 0) with magneti �eld to an attrative AIM withoutmagneti �eld by employing a �spin-harge�-transformation, or spin-isospin transformation
T.1 Denote the unoupied impurity site |⊔〉 ≡ | ⇓〉 by isospin Td,z = −1

2 , and in analogythe doubly oupied site (Td,z = 1
2 ) by | ↑↓〉 ≡| ⇑〉. T maps a spin state to an isospin state,i.e.
| ↑〉 T→| ⇑〉 and | ↓〉 T→| ⇓〉. (1.18)In order to write this formally for the Anderson model it is onvenient to use Hubbardoperators, Xab := |a〉〈b |. The impurity site operator thus an be written as

c†d,↑ = X↑,⇓ +X⇑,↓ and c†d,↓ = X↓,⇓ −X⇑,↑. (1.19)The spin-harge transformation has the e�et
Tc†d,↑T

−1 = X⇑,↓ +X↑,⇓ = c†d,↑, but Tc†d,↓T
−1 = X⇓,↓ −X↑,⇑ = cd,↓and vie versa.The symmetri AIM loal magneti �eld H in positive z-diretion is given by (1.1) with

εd = −U/2 plus (1.17). We �nd that nd,↑ = X↑,↑ +X⇑,⇑ is invariant under T , Tnd,↑T
−1 =

nd,↑. However, nd,↓ = X↓,↓+X⇑,⇑ transforms to 1−nd,↓, where 1 = X↑,↑+X↓,↓+X⇑,⇑+X⇓,⇓was used. Thus, we see that the spin operator Sd,z,
Sd,z =

1

2
(nd,↑ − nd,↓)

T→ 1

2
(nd,↑ + nd,↓ − 1) =: T̂d,z, (1.20)transforms to the isospin operator T̂d,z with the property T̂d,z| ⇑〉 = 1

2| ⇑〉, T̂d,z| ⇓〉 = −1
2| ⇓〉.The interation term transforms as nd,↑nd,↓ = X⇑,⇑

T→ X↑,↑. Omitting the ondutionband and the hybridisation term one �nds
T (HAnd +Hmag)T

−1 = −2hX⇑,⇑ − (εd + h)(X↑,↑ +X↓,↓) + εd + h (1.21)by partile-hole symmetry and using the expression for the unit operator 1. This an beompared with parameters ε′d, U ′ for an Anderson model without magneti �eld , negletingan additional onstant,
H ′

And = (2ε′d + U ′)X⇑,⇑ + ε′d(X↑,↑ +X↓,↓). (1.22)The omparison of (1.21) with (1.22) shows that it is possible to transform the symmetriAnderson model with loal repulsion (U > 0) and with a loal magneti �eld to an asym-metri Anderson model with negative U ′ = −U and the identi�ation for the asymmetriparameters with the magneti �eld is
h = −

(

ε′d +
U ′

2

)

. (1.23)1This is equivalent to a partile hole transformation for the down spin partiles.



1.2 The Hubbard Model 15Clearly, the symmetri ase (ε′d = −U ′

2 ) orresponds to zero magneti �eld. For ε′d < ∣∣U2 ∣∣
h is negative. The appropriate transformation for the band eletrons is

Tc†k,↑T
−1 = c†k,↑, and Tc†k,↓T

−1 = c−k,↓,if ε−k = −εk and V−k = V ∗
k .The dynami response funtions in the harge and spin hannel map onto eah otherunder the spin-isospin transformation T . The diagonal and transverse spin (χs and χt)and harge suseptibilities (χc and χt

c) are given by the following equations
χs(ω) = 〈〈nd,↑ − nd,↓;nd,↑ − nd,↓〉〉ω , (1.24)
χc(ω) = 〈〈nd,↑ + nd,↓ − 1;nd,↑ + nd,↓ − 1〉〉ω , (1.25)
χt(ω) = 〈〈c†d,↑cd,↓; c

†
d,↓cd,↑〉〉ω, (1.26)

χt
c(ω) = 〈〈c†d,↑c

†
d,↓; cd,↓cd,↑〉〉ω. (1.27)One �nds easily that

χs(ω)
T↔ χc(ω) and χt(ω)

T↔ χt
c(ω). (1.28)1.2 The Hubbard Model1.2.1 General features and model parametersProbably the simplest lattie model to study strong orrelation physis inluding miro-sopi harge and spin degrees of freedom, is the model suggested and disussed by Hubbard(1963, 1964a,b), Kanamori (1963), and Gutzwiller (1963). The Hamiltonian - referred toas the Hubbard model - in the grand-anonial formalism reads

H = −
∑

i,j,σ

(tijc
†
i,σcj,σ + h.c.) − µ

∑

iσ

niσ + U
∑

i

ni,↑ni,↓, (1.29)where the �rst term desribes hopping of eletrons from a lattie site i to j with amplitude
tij = 1/Ns

∑

k eik(Ri−Rj)εk; Ns is the number of lattie sites. Hopping is often restritedto neighbouring sites and the amplitude is taken to be the same for all sites t. µ is thehemial potential, whose value is determined by the �lling fator x. The third term in Honstitutes the on-site eletron-eletron interation of strength U . The model we onsiderhere is for a band of s-orbitals suh that eah site is maximally oupied by two eletrons.Extension to higher degeneraies are not onsidered in this thesis, but are ertainly ofinterest for the desription of real materials. If a ertain hopping amplitude t is given theband dispersion energy an be alulated, and for instane, for nearest neighbour hoppingon a ubi lattie with lattie onstant a we have in d dimensions
εk = −t

∑

〈i,j〉

e−ik(Ri−Rj) = −2t

d
∑

α=1

cos(kαa). (1.30)



16 Models of strongly orrelated eletronsFor large U and half �lling (x = 1) every lattie spae is likely to be oupied byonly one eletron. Starting from suh a on�guration one an alulate orretions in aperturbation theory in the hopping term and one obtains the so alled t-J-model, where aHeisenberg spin oupling term,
HJ =

J

2

∑

〈i,j〉

Si · Sj , (1.31)with J = 4t2/U , is generated. This is analogous to the mapping of the AIM to the Kondomodel for strong oupling. For the t-J-model away from half �lling the hopping termwith amplitude t [f. eq. (1.29)℄ has to be onsidered, but double oupany is alwaysforbidden. Sine J is positive an anti-ferromagneti ordering is expeted in the parameterregime where the doping is not too large.In the atomi limit, εk = t0 (zero bandwidth) or tij = δijt0, the equations of motionfor the retarded Green's funtion an be solved exatly, whih yields for µ = 0

Gal
ij,σ(ω) = δij

(

1 − 〈n−σ〉
ω+ − t0

+
〈n−σ〉

ω+ − (t0 + U)

)

. (1.32)This gives two delta-peaks at t0 and t0 + U similar as in the atomi limit for the AIM.These exitations are broadened for �nite band width and then are referred to as lowerand upper Hubbard peaks.The Hubbard Hamiltonian (1.29) has a number of symmetries. It is invariant under aglobal gauge transformation,
c†j,σ → eiαc†j,σ, (1.33)and orrespondingly the eletron number is onserved. (1.29) is also invariant under rota-tions in spin spae U(λ) = eiλ·S (SU(2) symmetry), where S =

∑

i Si, and therefore thetotal spin is a onserved quantity. Similar as the AIM the Hubbard model for half �lling,a bipartite lattie and µ = U/2 is invariant under a partile-hole transformation
ci,σ ↔ −c†i,σ. (1.34)Other symmetries for spei� lattie strutures exist, but we will not onsider any of thesein detail.1.2.2 The Spin-Isospin transformation and symmetry breakingSimilar as in the AIM desribed in setion 1.1.2 there is a anonial transformation whihmaps the attrative model with arbitrary hemial potential to a half-�lled repulsive modelwith a magneti �eld. The details of this transformation are given in the appendix of the re-view artile by Minas et al. (1990). Starting point is the attrative Hubbard Hamiltonianin the form

H− = −
∑

i,j,σ

(tijc
†
i,σcj,σ + h.c.) − µ

∑

i,s

ni,σ − U
∑

i

ni,↑ni,↓ = H(t
(1)
ij , µ

(1), U (1)), (1.35)



1.2 The Hubbard Model 17where U (1) = −U < 0. Note that the hemial potential µ(1) = µ here an take arbitraryvalues, suh that a ertain �lling is ahieved. This model is not magnetially ordered sineeletrons tend to form loal pairs due to the attration term (Lieb 1989). As a onsequeneone has
∑

i

〈Sα
i 〉 = 0,

∑

i

eiq0Ri〈Sα
i 〉 = 0, (1.36)

α = +,−, z, i.e. no ferromagneti order and no ommensurate anti-ferromagneti order. q0suh that eiq0Ri hanges sign from one sublattie to another. The perfet nesting ondition
εk = 1/Ns

∑

ij tije
ik(Ri−Rj) = −εk+q0 is satis�ed. The anonial transformation

c†i,↓ = eiq0Ribi,↓, c†i,↑ = b†i,↑, (1.37)
ci,↓ = e−iq0Rib†i,↓, ci,↑ = bi,↑, (1.38)suh that ni↑ = n′i↑ but ni↓ = 1 − n′i↓, maps H(t

(1)
ij , µ

(1), U (1)) to H(t
(2)
ij , µ

(2), U (2)) +

Hmag(h) + C in terms of the b operators,
Hmag(h) = −h

∑

i

(n′i,↑ − n′i,↓). (1.39)The parameters are related by t(1)ij = t
(2)
ij = tij , U (2) = −U (1) = U > 0, µ(2) = U/2 and

h = −(U/2 + µ). C = µNs and an be omitted as a onstant. Spin quantities transforminto harge quantities and vie versa, as has been seen above in the AIM. Condition (1.36)beomes 1/Ns
∑

i〈ni〉 = 1, whih orresponds to half �lling.We want to look at the relevant symmetry breaking terms in the harge and spinhannel. The symmetry breaking of interest for the repulsive model is an external �eldoupling to the spin degrees of freedom and we introdue the general term
H+

sb =
∑

i

Hi · Si =
∑

i

H1
i S

1
i +H2

i S
2
i +H3

i S
3
i . (1.40)We an introdue the two operators S+

i = c†i,↑ci,↓ and S−
i = c†i,↓ci,↑ suh that

S1
i =

1

2
(S+

i + S−
i ), S2

i = − i

2
(S+

i − S−
i ), S3

i =
1

2
(ni,↑ − ni,↓). (1.41)A speial ase for magneti symmetry breaking is homogeneous magneti symmetry break-ing H1

i = H2
i = 0 and H3

i = −2h, whih orresponds to hoosing a �eld along the z-axis.The symmetry breaking term then just has the simple form (1.39). Another symmetrybreaking is the antiferromagneti symmetry breaking with the z-axis as preferred orienta-tion. This requires a bipartite lattie struture with an A and B sublattie. The symmetrybreaking �eld has the form H1
i = H2

i = 0 and H3
i = −2h for i ∈ A and H3

i = 2h for i ∈ B.For the attrative Hubbard modelH− the natural symmetry breaking term is a ouplingto the harge degrees of freedom. In analogy to the spin operators we an introdue an



18 Models of strongly orrelated eletronsisospin operator re�eting the di�erent harge degrees for freedom, Tα
i = 1

2C
†
i σ

(α)Ci, where
C

†
i = (c†i,↑, ci,↓). We introdue similar as above T+

i = c†i,↑c
†
i,↓, T−

i = ci,↓ci,↑ suh that
T 1

i =
1

2
(T+

i + T−
i ), T 2

i = − i

2
(T+

i − T−
i ), T 3

i =
1

2
(ni,↑ + ni,↓). (1.42)The symmetry breaking term for the attrative model has then the standard form

H−
sb =

∑

i

Mi · Ti =
∑

i

M1
i T

1
i +M2

i T
2
i +M3

i T
3
i . (1.43)There are two types of symmetry breaking of partiular interest in the attrative Hubbardmodel. The �rst one is a harge density wave (CDW) state. For this we need to onsidera bipartite lattie and the order parameter orresponds to 〈T 3

i − T 3
i+1〉 6= 0, where i ∈ Aand i + 1 ∈ B. Suh a symmetry ould be invoked by a symmetry breaking �eld ofthe form M1

i = M2
i = 0 and M3

i = εd for i ∈ A and M3
i = −εd for i ∈ B. Anothersymmetry breaking of interest is superonduting order whih an be indued by hoosing

M1
i = Re∆0

sc and M2
i = Im∆0

sc and M3
i = 0. This is an o�diagonal symmetry breakingand has the expliit form

H−
sc =

∑

i

(Re∆0
sc − iIm∆0

sc)T
+
i + (Re∆0

sc + iIm∆0
sc)T

−
i =

∑

i

[∆0
sc]

∗c†i,↑c
†
i,↓ + ∆0

scci,↓ci,↑We saw above that the attrative and the repulsive model with �eld are related by aanonial transformation as given in (1.38). Let us investigate how the symmetry breakingterm transforms under this transformation. We �nd T+
i → S+

i eiq0Ri and T−
i → S−

i e−iq0Riand thus apart from additional onstants
T 1

i → 1

2
S+

i eiq0Ri +S−
i e−iq0Ri , T 2

i → − i

2
S+

i eiq0Ri −S−
i e−iq0Ri , T 3

i → S3
i , (1.44)whih expliitly shows that apart from phase fators spin is transformed into isospin andvie versa. We an write

H−
sb →

∑

i

(M1
i − iM2

i )eiq0RiS+
i + (M1

i + iM2
i )e−iq0RiS−

i +Mz
i S

3
iSine the symmetry breaking term in the spin hannel (1.40) an be written as

H+
sb =

∑

i

H+
i S

+
i +H−

i S
−
i +Hz

i S
3
i , (1.45)where H+

i = H1
i − iH2

i and H−
i = H1

i + iH2
i , we an relate symmetry breaking �elds by

Mz
i = Hz

i and H+
i = (M1

i − iM2
i )eiq0Ri and H−

i = (M1
i + iM2

i )e−iq0Ri . It is therefore easyto see that the diagonal antiferromagneti ordering in the repulsive model orresponds toharge density wave ordering in the attrative model, and the superonduting symmetrybreaking (o�diagonal in the harge hannel) in the attrative ase orresponds to transverseordering in the spin hannel for the repulsive ase. More details onerning di�erent typesof ordering an be found in the review artile by Minas et al. (1990).



Chapter 2Methods for strong orrelationphysis

Most of the unsolved problems ofphysis and theoretial hemistryare of the kind the renormalizationgroup is intended to solve (otherproblems usually do not remain un-solved for long).Kenneth G. Wilson

In this hapter the methods relevant for this thesis are desribed. First we fous on therenormalisation group methods diretly appliable to the AIM. The most important aspetsof the numerial renormalisation group, inluding all the reent extensions to alulatespetral funtions, are outlined. Then we dediate a large part of the hapter to thedetailed desription of the renormalised perturbation theory approah and illustrate theapproah with a few examples of low order expansions. In the last setion of the hapterwe give the main equations for the dynamial mean �eld theory, whih links the solutionof an e�etive impurity model to that of a lattie model.2.1 The Numerial Renormalisation Group (NRG)The renormalisation group (RG) for statistial physis is an approah designed to under-stand the behaviour of systems with many oupled degrees of freedom. Let the systembe haraterised by a Hamiltonian H. Mathematially, the RG an then be de�ned asa homomorphism R on the spae of Hamiltonians VH , R : VH → VH . It an be moreonvenient to understand a Hamiltonian H ∈ VH in terms of its physial ouplings g, suhthat H = H(g) is a family of Hamiltonians for di�erent g. Then the RG mapping atson the spae of ouplings Vg, r : Vg → Vg. Usually, this mapping is invoked by dereas-ing the energy sale, for instane the high energy ut-o�, or oarse graining of spae. Inpratie, this an be done, for instane, by hanging the fundamental length sale of theproblem by a parameter, b say, and integrating out the degrees of freedom within the oldand new fundamental sale. Usually, the RG involves a resaling step in order to makethe Hamiltonian before and after the transformation omparable. We an haraterise thetransformation by the parameter b, r = rb and a mathematial group law is realised for su-essive appliation of the mapping via rb2(rb1(g)) = rb2+b1(g). Sine in general an inverse



20 Methods for strong orrelation physisof the transformation does not exist (the degrees of freedom whih are integrated out arenot aessible anymore), the renormalisation group is mathematially a semi-group only.A �xed point for the transformation in the oupling spae g∗ is de�ned by r(g∗) = g∗, andthus implies invariane of the Hamiltonian under the RG transformation. Physially, the�xed point Hamiltonian an represent the essene of the low energy physis of the problem(Coleman 2002).In many ases one aims to identify all the �xed points of a model, and to �nd out forwhih initial ouplings a ertain �xed point in the oupling spae is favoured and whether itis stable. An interpretation of the RG is to see it as a saling approah, where a �xed pointis reahed, when the ut-o� energy drops below the lowest energy sale in the problem, suhthat no further hanges our and the Hamiltonian remains invariant. Before a �xed pointis reahed a rossover from one e�etive model desription to a di�erent one an our.This happens, when the energy ut-o� beomes smaller than a harateristi energy salefor the model. Therefore, a partiular lass of high energy exitations an only ourthrough virtual proesses and therefore the Hamiltonian desription alters. An exampleis the passage from the AIM to the Kondo model, where in the latter ase real harge�utuations are eliminated.In this thesis we deal with a renormalisation group approah in the numerial form,NRG, whih was explored and applied to the Kondo model by Wilson (1975) and later alsoto the AIM (Krishna-murthy et al. 1980a,b). It ontributed substantially to a ompletepiture of the Kondo Problem [see Hewson (1993a)℄. One progresses iteratively to lowerenergy sales whilst observing the behaviour of the energy spetrum of the Hamiltonian.One an regard the RG here as method to split the full problem with (too) many degreesof freedom into smaller problems on a ertain energy sale, whih an be solved. Byomparing the solution of these �sub-problems� the behaviour of the original �full system�an be analysed. The details of the appliation to the AIM are given in the followingsetion.2.1.1 NRG setup for the Anderson impurity modelThe numerial renormalisation group (NRG) for the Kondo and Anderson impurity modelhas been the subjet of a large number of publiations and has for instane reently beenreviewed by Bulla et al. (2007). We will therefore keep our explanations here to a minimumand refer the reader for more details to referenes (Hewson 1993a, Bulla et al. 2007, Bauer2007) and the original papers (Krishna-murthy et al. 1980a,b).The starting point is the Hamiltonian of the AIM (1.1) with a onstant density of statesin the ondution band. For the NRG approah it is mapped to a disrete form, the soalled linear hain Hamiltonian,
HN
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(
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∆
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(f †0,σcd,σ + h.c.) +
N−1
∑
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γn+1(f
†
n,σfn+1,σ + h.c.), (2.1)whih is also depited in �gure 2.1.PSfrag replaements

0 N − 1 N−1 1 2Figure 2.1: Linear hain model whih orresponds to Hamiltonian (2.1).This Hamiltonian has been saled by half the bandwidth D. As we an see the impuritypart (�rst line) of the Hamiltonian (2.1) is the same as in the original ontinuum model(1.1). The ondution band and hybridisation term (seond line) have taken a di�erentform and are written in terms of an fn,σ-operator basis. It is important that in this basisonly the states orresponding to f0,σ ouple diretly to the impurity term. We will brie�ysketh the steps of the transformation to get from (1.1) to (2.1).The major goal of the transformation is to learly separate how states of di�erent energysales in the eletron band ouple to the impurity degrees of freedom. A �rst step is toexploit the spherial symmetry of the problem and to expand the band eletron operatorsinto spherial harmonis, where only the s-wave states are important sine they ouple tothe impurity. The next step is a logarithmi disretisation of the band into intervals In =

(Λ−(n+1),Λ−n) with length ln = Λ−n−Λ−(n+1) haraterised by the parameter Λ > 1. Notethat Λ → 1 orresponds to the ontinuum model and ln+1/ln = Λ−1 gives the ratio by whihthe interval length dereases. The idea of the logarithmi disretisation is that the energiesare learly separated in di�erent orders of magnitude (energy sale separation). In eahinterval the operators are expanded in a Fourier series. An approximation in the approahis to neglet higher p-states in the Fourier expansion and fous on the lowest omponent.This turns out be a good approximation for Λ ≃ 2 as analysed by Krishna-murthy et al.(1980a). Cruial for the setup of an iterative proedure is a basis hange. The startingpoint is a spatially loalised state at the impurity, whih is a superposition of states fromall intervals In. It is reated by f †0,σ on the �0th site� of a linear hain and is the onlystate that ouples diretly to the impurity. The rest of the basis states are generated in ahopping (tridiagonal) Hamiltonian form with o�diagonal elements γn as seen in equation(2.1).From the Hamiltonian (2.1) we an easily �nd the reurrene relation
HN+1

And = HN
And + γN+1(f

†
NσfN+1,σ + h.c.) (2.2)and thus (2.1) an be used to generate an iterative diagonalisation sheme, when it isonsidered for steps N = 0, . . . , Nmax. The numerial RG transformation is de�ned by

R(HN ) = HN+1 :=
√

ΛHN + ξN+1(f
†
NσfN+1,σ + h.c.). (2.3)



22 Methods for strong orrelation physisThe de�nition of the linear hain parameters γN and ξN is (Hewson 1993a),
γn =

1
2 (1 + Λ−1)Λ(−n−1)/2(1 − Λ−n)

(1 − Λ−2n−1)1/2(1 − Λ−2n+1)1/2
, ξn =

D(1 + Λ−1)(1 − Λ−n)

2(1 − Λ−2n−1)1/2(1 − Λ−2n+1)1/2
. (2.4)The γn the property of falling o� with n, whih implies that one ouples to lower energetiontributions at later NRG steps. This is very important for the NRG approah, sinethe high energy physis should not be altered anymore, when we desend to lower energiesalong the hain. Note that a saling fator √

Λ is inluded in the transformation. Itis hosen suh that the hopping at step N is of order one and allows one to ompareexitations from di�erent NRG steps. This is illustrated in �gure 2.2.
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Figure 2.2: Disrete energies from the diagonalisation: Desending to lower energies andresaling in order ompare with earlier steps.In the iterative diagonalisation proedure we start by onsidering the deoupled impu-rity problem, whih an easily be solved. After this one onsiders the two site Hamiltonian
H0

And involving the impurity and the �0-site�, and solves this numerially. Then for eahsuessive step N , the basis is always enlarged by an additional site on the linear hainand the Hamiltonian diagonalised. Sine the Hilbert spae inreases exponentially the or-responding matries beome too large to be handled numerially for a ertain iteration.At this point a trunation sets in, where states orresponding to energies higher than aertain uto� are negleted. This is motivated by the RG idea that higher energies areintegrated out and do not ontribute any more to the low energy physis. The eigenstatesan be haraterised in terms of onserved quantum numbers. As mentioned in hapter 1for the Hamiltonian (1.1), the total harge and total spin are symmetries and give goodquantum numbers QN and SN . For the linear hain model the harge and spin operatorshave the form (measured relative to number of sites),
Q̂N =

N
∑

σ,n=0

f †n,σfn,σ + c†d,σcd,σ −N − 2 (2.5)and
SN =

N
∑

σ,n=0

Sn,f + Sd (2.6)
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N 〉 = SN (SN + 1)). Details about the extension of the basis at eahNRG step an be found in (Krishna-murthy et al. 1980a, appendix).In this series of transformations (2.3) the lowest exitations from the ground-state anbe followed when the energy sale after eah step is resaled as desribed above. By �ttinge�etive models to the onverged low energy spetra di�erent �xed points haraterising thebehaviour of the model an be identi�ed. It is possible that for intermediate energy salesa rossover from one �xed point to another an be observed, depending on the parametersinitially hosen for the RG �ow. It is not straightforward to give an RG transformation forthe oupling onstants in the AIM. As desribed by Hewson et al. (2004) one an, however,identify renormalised parameters as introdued in setion 1.1 for all NRG steps, whihharaterise the behaviour of the model. How this is ahieved is illustrated in appendixB. In setion 2.2 on the renormalised perturbation theory we will desribe the approahbased on these renormalised parameters.The major subjet of this thesis is the study of situations with broken symmetry.Various modi�ations our to this standard setup when the NRG is applied to situationswith symmetry breaking and in the DMFT framework. We will point out later what themain di�erenes are.2.1.2 Stati and dynami quantities from NRG alulationsThere are a number of extensions to the original sheme desribed above, whih allow oneto alulate stati and dynami quantities, suh as the oupation number, the one-partileGreen's funtion and spin and harge suseptibilities (Sakai et al. 1989, Costi et al. 1994).In this setion we will brie�y explain the methods relevant for this thesis.Stati expetation values like the single oupany 〈nd,σ 〉 and the double oupany

〈nd,↑nd,↓〉 an be alulated from matrix elements and the ground state energies only. Fora salar operator O the expetation value is given by
〈O〉 =

1

Z
tr[e−βHO] =

1

Z

∑

m

e−βEm〈m|O|m〉, (2.7)in terms of an eigenbasis {|m〉} ofH. The energy eigenvalues Em are alulated at eah NRGstep by diagonalising the Hamiltonian. We also need to evaluate the matrix elements, whihan be done easily for the isolated impurity and then at eah iteration by transformingthem with the orresponding orthogonal matries for the basis hange. For details we referto Bauer (2007).One an also alulate the retarded impurity Green's funtion
Gd,σ(t) := −iθ(t)〈{cd,σ(t), c†d,σ(0)}〉 = −iθ(t)tr(ρ{cd,σ(t), c†d,σ(0)}). (2.8)Inserting an eigenbasis of the Hamiltonian and writing out the Heisenberg operators

cd,σ(t) = eiHtcd,σe−iHt, we �nd with the standard expression ρ = e−βH/Z and after Fourier



24 Methods for strong orrelation physistransformation, Gd,σ(ω) =
∫

dt eiωtGd,σ(t) that the spetral density ρd,σ(ω) = −ImGd,σ(ω)an be displayed in the Lehman representation as a sum of delta funtions
ρd(ω) =

1

Z

∑

m,n

|〈m|c†d|n〉|2δ[ω − (Em −En)](e−βEm + e−βEn). (2.9)The real part of Gd,σ(ω) an be obtained via prinipal value integration. The matrix el-ements 〈m|c†d,σ |n〉 are de�ned for the isolated impurity system and are then alulated ateah NRG step with the help of the orresponding basis transformation (Krishna-murthy et al.1980a). The NRG alulations in this thesis are arried out at zero temperature. In pra-tie, it is usually su�ient to use a value for the temperature 1/β whih is smaller than allthe other energies appearing in the alulation. In order to obtain a ontinuous spetrumwe have to broaden the exitation peaks in (2.9) numerially,
ρ(ω) =

∑

i

wifb(ω, i), (2.10)where wi is the weight,
wi(m,n) =

1

Z
|〈m|Oα|n〉|2(e−βEm + e−βEn), (2.11)for a ertain exitation energy Ei(m,n) = Em − En . As desribed by Bulla et al. (1998) asuitable broadening funtion fb is an exponential on a logarithmi sale,

fb(ω, i) =
e−

b2

4 e−(log |ω|−log Ei)
2/b2

b |Ei|
√

π

. (2.12)Results obtained for this thesis make use of this broadening funtion unless otherwisestated. (2.12) has the advantage of broadening the spetral data aording to the infor-mation available, i.e. the few peaks for higher energies are broadened out more than theones on lower energies, where a lot of information is available. In the interpretation of thespetra one only has to bear in mind that the broadening funtion displays some asym-metry. In pratie in this simple sheme, we have to use matrix elements and exitationsfrom di�erent NRG iterations and merge this information to obtain a spetral density onall energy sales. The idea behind this is that the most aurate information for a typialenergy ω is given by the iteration N where ω ≃ Λ−(N−1)/2.Redued density matrix shemeThe method to obtain spetra desribed in the last setion works well in many ases(Hewson 1993a, Bulla et al. 2007). It is, however, important to note that the �rst few NRGiterations, whih desribe the high energy features are not aurate enough to apturea small symmetry breaking, for instane indued by a magneti �eld. Therefore, thedynamial quantities at high energies are not neessarily alulated with the orret ground



2.1 The Numerial Renormalisation Group (NRG) 25state, and, for instane, the magnetisation obtained from a sum over the spetral weightdoes not give orret values when ompared with exat results (Hofstetter 2000). Onlyfor later steps, for lower energy sales, the symmetry breaking is alulated orretly and,therefore, the right ground-state obtained. As pointed out by Hofstetter (2000) in animproved alulation of spetra one really has to start with the ground-state obtained inthe last iteration. It is possible to do this by storing the information from all the NRG stepsand alulating the spetra �bakwards� from the ground state at the last NRG iteration.The orret implementation rests on the onept of the redued density matrix ρred, wherewe think at stepm of the sites n > m as environment. This is illustrated in �gure 2.3. Suha proedure makes use of the full information obtained in the iterative diagonalisation.PSfrag replaements
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Figure 2.3: Linear hain model, where iterations n > m are treated as environment forstep m.This onept of the redued density matrix an be used to alulate a more aurateimpurity Green's funtion (2.8). Sine the density matrix is only diagonal at the last stepof the NRG we obtain a di�erent expression for the Lehmann sum (2.9),

ρd,σ(ω) =
∑

m,n

αmnδ[ω − (Em − En)], (2.13)with
αmn := 〈m|c†d,σ |n〉∗

(

∑

l

〈m|c†d,σ |l〉〈l|ρ|n〉 + 〈m|c†d,σ|n〉
∑

l

〈m|ρ|l〉〈l|c†d,σ |n〉
)

. (2.14)Details of the implementation are desribed in referene Bauer (2007). This approah hasstill an unsatisfatory aspet as we have to mix information from di�erent iterations topath together the spetral funtion on all energy sales. A more rigorous sheme alsoinvolving the onept of a redued density matrix is explained in the following setion.Full density matrix (FDM) approahA di�erent approah to spetral funtions within the NRG framework is based on theomplete basis set of the full linear hain of length N whih has been identi�ed byAnders and Shiller (2005). The idea is to onsider the linear hain model (�gure 2.3)at step m < N as the full hain with all the hopping elements for onneting sites i > mset to zero rather than thinking of the hain being extended by one site at eah NRG step.A typial Fok basis state for this set of �environment� sites is denoted by
|em〉 := |Jm+1〉 ⊗ . . .⊗|JN 〉, (2.15)



26 Methods for strong orrelation physiswhere usually Jm = 1 . . . 4, numbering the basis state at site m, from empty to doubleoupation. With this a basis state at iteration m, denoted by |r〉m an be extended to abasis state for the full hain of length N as a produt state
|r,em〉N := |r〉m ⊗|em〉 ≡|r,e;m〉, (2.16)where the last expression orresponds to the notation used by Anders and Shiller (2005).Due to the trunation of the Hilbert spae and disarding of states during the NRG proe-dure it is not straight forward to see how one an onstrut a omplete basis set. We willuse the notation, whih labels kept states |r〉K with |k〉 and disarded states |r〉d with |l〉.We denote the iteration at whih the trunation �rst sets in by m0. Then the set of allstates

{|k,e;m0〉}, {|l,e;m0〉}, (2.17)i.e. the set of all kept states equipped with the rest of the hain environment together withthe set of all disarded states plus environment, form a basis for the full Wilson hain.Going one step further to m0 + 1 a moment's thought shows that
{|k,e;m0 + 1〉}, {|l,e;m0 + 1〉} (2.18)is only a subset of a omplete basis for the hain, sine we have disarded the states

{|l,e;m0〉} at the step before. If, however, we ollet the states
{|k,e;m0 + 1〉}, {|l,e;m0 + 1〉}, {|l,e;m0〉}, (2.19)we obtain again a omplete basis for the full hain. This an be extended to the lastiteration N and if we think of all states for this last step as disarded (just for notationalonveniene), then we an de�ne the Anders-Shiller (AS) basis as the set of all disardedstates equipped with environment,

{|l,e;m〉}m=m0 ,...,N . (2.20)This is a omplete basis for the full NRG hain.By de�nition of the AS basis we know that for the Hamiltonian at stage m, Hm
And,

|k,e;m〉 and |l, e;m〉 are exat eigenstates, Hm
And|α,e;m〉 = Eα

m|α,e;m〉 for α = l, k. Inorder to alulate spetral funtions one makes the fundamental approximation to assumethat they are also eigenstates of the Hamiltonian for the full hain H = HNmax
And . Thisamounts to saying that the e�et of further environment sites, whih due to the NRGsetup ouple with dereasing energies, is only a small perturbation, and therefore

H|α,e;m〉 ≈ Eα
m|α,e;m〉. (2.21)In this sense the AS basis is an approximate eigenbasis for the linear hain model. This fatan be used to evaluate spetral funtions (Peters et al. 2006, Weihselbaum and von Delft



2.2 The Renormalised Perturbation Theory (RPT) 272006). As we trae out the environment states this approah involves the redued densitymatrix ρred introdued before. Sine we are using a omplete basis set one an easilysee, that for hains of any length, sum rules are satis�ed exatly. The details for themanipulations for a general spetral funtion of the form,
GAB(t) = −iθ(t)tr(ρ[A(t), B]ε) (2.22)(ε = −1 bosoni, ε = 1 fermioni), are given in appendix A.Self-energy with higher F -Green's funtionOne the impurity Green's funtion has been alulated aording to the proedure de-sribed above it is possible to extrat the impurity self-energy from the Dyson equation

Σd,σ(ω) = G0
d,σ(ω)−1 −Gd,σ(ω)−1. (2.23)It turns out, however, that a better method to alulate the self-energy is to employ ahigher Green's funtion (Bulla et al. 1998), sine the di�erene in (2.23) an lead to largenumerial errors for small ω. The relevant expressions an be found in an equations ofmotion approah, where one �nds the relation

(ω − εd −K(ω))Gd,σ(ω) − UFσ(ω) = 1, (2.24)with the higher F -Green's funtion,
Fσ(ω) = 〈〈cd,σc

†
d,−σcd,−σ; c†d,σ〉〉ω (2.25)and K(ω) was given in (1.6). Identifying the self-energy as

Σσ(ω) = U
Fσ(z)

Gσ(ω)
, (2.26)yields in equation (2.24) the standard expression for the Green's funtion

Gσ(ω) =
1

ω − εd −K(ω) − Σσ(ω)
. (2.27)Hene, Σσ(ω) an be alulated from equation (2.26) one Gσ(ω) and Fσ(z) have beendetermined.2.2 The Renormalised Perturbation Theory (RPT)In setion 1.1 we have heuristially introdued renormalised parameters for the AIM andshown that stati response quantities an onveniently be expressed in terms of them. Quitegenerally in strongly orrelated systems, physial ouplings an hange their e�etive valuesubstantially, when one desends from the band energy to typial low energy sales. A



28 Methods for strong orrelation physisprominent example of suh a behaviour is Anderson's poor man's saling (Anderson 1970),where the antiferromagneti spin-spin oupling J is seen to inrease when the energy islowered. In fat, sine the ideas of Landau's Fermi liquid theory it is well known that thelow energy physis of interating partiles an be desribed in terms of e�etive parameterswhih di�er from their original value (Abrikosov et al. 1963). As a prominent exampleonsider heavy fermion systems, where the e�etive mass of harge arriers an vary upto a fator of 500 from their bare mass. In models of strongly interating eletrons theoriginal parameters are usually of the order of the band width. In loally orrelated systems,however, the behaviour is generally dominated by a low energy sale, for instane the Kondotemperature TK. If we are interested in the properties of the order TK it is very onvenientto hoose the orresponding e�etive low energy parameters as a starting point for thedesription of the behaviour.For a perturbative approah it is important to hoose an expansion point with anappropriate energy sale suh that other e�ets enter as orretions. Therefore, it is a goodstrategy in systems where the renormalisation e�ets are large to work with renormalisedouplings on the low energy sale rather than the bare parameters. Suh an approah, arenormalised perturbation theory, an be onstruted, and for the AIM it has the propertythat the lowest order results are asymptotially exat (Hewson 1993b, 2001). One has to beareful, however, sine by using e�etive parameters renormalisation e�ets are impliitlytaken into aount and must not be inluded again. Similar as in the high energy �eldtheoreti approahes (Ryder 1996) ounter-terms, whih are introdued there to aneldivergenes, have to be introdued in order to satisfy renormalisation onditions (Hewson1993b, 2001). In the following setions we explain the details for the formalism of the RPTbased on these Fermi liquid parameters for the AIM in a magneti �eld.2.2.1 The RPT setupFor the setup of the RPT it is onvenient to work in the funtional integral formalism.The Anderson impurity model from equation (1.1) is expressed as
ZAIM =

∫

D(dσ , dσ)D(ck,σ, ck,σ)e
−

β
R

0

dτLAIM(τ)
, (2.28)with

LAIM =
∑

k,σ

ck,σ(τ)(
∂

∂τ
+ εk)ck,σ(τ) +

∑

σ

dσ(τ)(
∂

∂τ
+ εd,σ)dσ(τ) +

∑

k,σ

Vk(ck,σ(τ)dσ(τ) + h.c.) + Und,↑(τ)nd,↓(τ) ≡ LAIM(εd,σ ,∆, U), (2.29)where we have allowed for a magneti �eld h, εd,σ = εd−σh and ∆ = πV 2/2D in the wideondution band limit as explained in the �rst hapter. ck,σ(τ) and dσ(τ) are Grassman



2.2 The Renormalised Perturbation Theory (RPT) 29�elds here. Resaling the band eletron �elds ck,σ → ck,σ/Vk and integrating them out thetotal ation beomes
S = −

∑

σ

β
∫

0

dτ

β
∫

0

dτ ′ dσ(τ)G0(τ − τ ′)−1dσ(τ ′) + U

β
∫

0

dτ nd,↑(τ)nd,↓(τ) ≡ S0 + SU , (2.30)where
G0(τ) =

1

β

∑

n

e−iτωn
1

iωn − εd,σ + i∆sgn(ωn)
. (2.31)The full d-site retarded Green's funtion (analytially ontinued to the real axis ω ∈ R),whih takes through the self-energy Σσ(ω, h) all interation e�ets into aount, reads

Gd,σ(ω) =
1

ω − εd,σ + i∆ − Σσ(ω, h)
. (2.32)The ation (2.30) is a ommon starting point for perturbation theory in the bare interation

U , by whih an approximation for Σσ(ω, h) an be alulated.As explored by Hewson (1993b, 2001) the Fermi liquid properties of the AIM, an beexpressed in terms of renormalised parameters, whih are obtained by expanding the self-energy at ω = 0. This approah rests on basi properties of the self-energy, −ImΣσ(ω) ∼ ω2(Luttinger 1961), whih essentially de�ne the Fermi liquid regime. With the usual de�nitionof the wavefuntion renormalisation
zσ(h)−1 := 1 − ∂

∂ω
ReΣσ(ω = 0, h), (2.33)the renormalised parameters are de�ned by

∆̃σ(h) := zσ(h)∆, ε̃d,σ(h) = zσ(h)[εd,σ + ReΣσ(0, h)]. (2.34)The remainder of the expansion of the self-energy Σrem
σ (ω, h) de�nes the renormalisedself-energy Σ̃σ(ω, h),

Σ̃σ(ω, h) = zσ(h)Σrem
σ (ω, h). (2.35)With these parameters we an write the impurity Green's funtion (2.32) equivalently as

Gd,σ(ω) =
zσ(h)

ω − ε̃d,σ(h) + i∆̃σ(h) − Σ̃σ(ω, h)
. (2.36)A renormalised interation Ũ(h) is de�ned by the full, antisymmetrised, renormalised fourpoint vertex funtion at zero frequeny,

Ũ(h) = Γ̃↑,↓(0, 0;h) = z↑(h)z↓(h)Γ↑,↓(0, 0;h). (2.37)This quantity is usually interpreted as the interation between quasipartiles in Fermiliquid theory (Abrikosov et al. 1963).



30 Methods for strong orrelation physisIn analogy to the renormalised perturbation theory in quantum �eld theory (Ryder1996, hapter 9), where the theory is written as LB = L + Lct (LB bare Lagrangian, Lctounter-terms) we an de�ne a renormalised perturbation theory by identifying
LAIM(εd,σ,∆, U) = LrAIM(ε̃d,σ , ∆̃, Ũ) + Lr

ct(λ1, λ2, λ3), (2.38)where the ounter-term Lagrangian reads
Lr

ct(λ1, λ2, λ3) =
∑

σ

d̄r
σ(τ)(λ2

∂

∂τ
− λ1)d

r
σ(τ) + λ3n

r
d,↑(τ)n

r
d,↓(τ). (2.39)Note that in the renormalised theory we are working with renormalised �elds dr

σ(τ) =

dσ(τ)/
√
zσ in LrAIM(ε̃d, ∆̃, Ũ ) and Lr

ct(λ1, λ2, λ3). The parameters λi have to be determinedby the renormalisation onditions for the renormalised self-energy
Σ̃σ(0, h) = 0,

∂Σ̃σ(0, h)

∂ω
= 0, (2.40)and for the full renormalised vertex at zero frequeny

Γ̃↑,↓(0, h) = Ũ(h). (2.41)These have to be satis�ed to all orders in perturbation theory suh that renormalisatione�ets are not over-ounted. The parameter λ1 also arries a spin label for the symmetrimodel with magneti �eld and λ2 beomes spin-dependent in the asymmetri model withmagneti �eld. We have omitted suh a notation for simpliity. In order to set up suhan RPT it is useful to introdue soure terms and de�ne generating funtionals as done inthe following setion.2.2.2 Funtional integral desription in the 1PI formalismThe generating funtional for the renormalised theory is given by
Zr[J ] =

∫

D(dr
σ , d

r
σ)e−Sr [dr

σ ,d
r
σ ]−Sc[dr

σ ,d
r
σ]−SJ [dr

σ,d
r
σ ]. (2.42)The renormalised parameter ation Sr an be obtained from LAIM(ε̃d,σ, ∆̃, Ũ ) by integrat-ing out the band eletrons as in the last setion,

Sr = −
∑

σ

β
∫

0

dτ

β
∫

0

dτ ′ d
r
σ(τ)G̃0

σ(τ − τ ′)−1dr
σ(τ ′) + Ũ

β
∫

0

dτ nr
d,↑(τ)n

r
d,↓(τ) (2.43)where

G̃0
σ(τ) =

1

β

∑

n

e−iτωn
1

iωn − ε̃d,σ + i∆̃σsgn(ωn)
(2.44)



2.2 The Renormalised Perturbation Theory (RPT) 31The ation for the ounter-terms an be written as
Sc = −

∑

σ

β
∫

0

dτ

β
∫

0

dτ ′ d
r
σ(τ)Gc,0

σ (τ − τ ′)−1dr
σ(τ ′) + λ3

β
∫

0

dτ nr
d,↑(τ)n

r
d,↓(τ), (2.45)where

Gc,0
σ (τ) =

1

β

∑

n

e−iτωn
1

λ2iωn + λ1
. (2.46)The one-partile irreduible (1PI) soure term is de�ned as

SJ =
∑

σ

β
∫

0

dτ [Jσd
r
σ(τ) + d

r
σ(τ)Jσ(τ)]. (2.47)As usual we an introdue a generating funtional for onneted Green's funtions,

W r[J ] = logZr[J ], (2.48)and the renormalised one-partile Green's funtion an be alulated as
Gd,σ(iωn) = − δ2W r[J ]

δJσ(iωn)δJσ(iωn)

∣

∣

∣

∣

J=0

. (2.49)Standard Setup of the renormalised perturbation theoryThe standard way to generate a renormalised perturbation expansion from (2.42) is towrite
Zr[J ] =

∫

D(dr
σ, d

r
σ)e

−Sr
0 [dr

σ,d
r
σ ]−Sr

Ũ
[dr

σ ,d
r
σ ]−Sc

0[dr
σ,d

r
σ ]−Sc

λ3
[dr

σ,d
r
σ ]−SJ [dr

σ,d
r
σ ] (2.50)

= e
−Sr

Ũ
[δJσ ,δ

Jσ
]−Sc

0[δJσ ,δ
Jσ

]−Sc
λ3

[δJσ ,δ
Jσ

]
∫

D(dr
σ, d

r
σ)e−Sr

0 [dr
σ,d

r
σ ]−SJ [dr

σ,d
r
σ ] (2.51)

= e
−Sr

Ũ
[δJσ ,δ

Jσ
]−Sc

0[δJσ ,δ
Jσ

]−Sc
λ3

[δJσ ,δ
Jσ

]Zr
0 [J ]. (2.52)where by Gaussian integration

Zr
0 [J ] = e

−
P

σ

β
R

0

dτ
β
R

0

dτ ′ Jσ(τ)G̃0
σ(τ−τ ′)Jσ(τ ′)

. (2.53)In this setup all the ounter-terms e−Sc
0 and e

−Sc
λ3 are treated diretly as interation termsand this is how the ounter-terms are usually introdued in quantum �eld theory (Ryder1996, hapter 9). They give rise to three additional Feynman rules for the diagrams:1. A ontration multiplied by λ1, whih we will denote by (◦) in the diagrams.2. A ontration with the additional fator λ2iωn or λ2ω for T = 0 after Fourier trans-formation, whih we will denote by (�) in the diagrams.



32 Methods for strong orrelation physis3. An interation term with onstant λ3, whih has exatly the same struture as thestandard AIM interation term and an be denoted by an interation vertex withside-sript λ3.The easiest way to analyse (2.52) is by expanding the exponential in Zr
0 [J ] in termsof free propagators, as given in (2.44), �rst and then at with the funtional derivativesfrom the interation terms in SŨ [δJσ , δJσ

], Sc
0[δJσ , δJσ

] and Sc
λ3

[δJσ , δJσ
] as a ontrationto verties. In order to alulate the one-partile Green's funtion one needs to leave twoexternal soure terms open for the last funtional derivatives, as seen from (2.49), andfor the two-partile Green's funtion (and full vertex) one needs four. Graphially, this isusually written out with lines (��) for the propagators Gr

0 and rosses (x) for the soureterms J . The funtional derivative δJk(τ) then just takes the ross away and relates it totime τ . It is onvenient to alulate diagrams after Fourier transformation. Rather thanthe Green's funtions we fous on the self-energy and vertex funtion.An indutive proof that suh a renormalised perturbation theory an be arried outorder by order is given in appendix C. We need to prove that the renormalisation onditions(2.40) and (2.41) an always be satis�ed. For this it is helpful to lassify the ontributionsto the proper self-energy into three di�erent types:
• (a) terms ΣŨ(iωn) oming purely from AIM interation term e−Sr

Ũ . They orrespondto the diagrams in the standard perturbation theory of the AIM.
• (b) terms oming purely from e−Sc

0 , whih orrespond to trivial ounter-terms whihan be olleted to a self-energy ontribution Σct(iωn) = −[λ1 + λ2iωn].
• () mixed terms Σmix

λ1,λ2,λ3
(iωn) generated by the ombination e−Sr

Ũ , e−Sc
0 , and e

−Sc
λ3 .The perturbative renormalised self-energy to order n is given by

Σ̃(n)(iωn) =
n
∑

k=1

[

∑

m

Σ
(k,m)

Ũ
(iωn) +

∑

m

Σ
mix,(k,m)
λ1,λ2,λ3

(iωn)
]

+ Σct(iωn), (2.54)where Σ(k,m) denotes the mth diagrammati ontribution to the self-energy of order k. Wehave omitted the spin index for notational simpliity. In order to lassify di�erent ordersof the perturbation theory it is useful to think of the ounter-term parameters as expandedin Ũ (Hewson 2001),
λi =

∑

k

λ
(k)
i Ũk. (2.55)Then for eah order of the perturbation theory we have to determine the oe�ients λ(n)

iin this expansion, suh that (2.40) and (2.41) are satis�ed, whilst all mixed terms for therenormalised self-energy are inluded.In order to illustrate how the RPT works we will brie�y disuss the expansion toseond order for the symmetri AIM with zero magneti �eld at T = 0. The �rst and
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Σ
(1)

Ũ ,σ
= Ũ

0
∫

−∞

dω [−ImG̃0
−σ(ω)]/π ≡ Ũ ñ−σ. (2.56)The full vertex to �rst order is trivial and the seond renormalisation ondition (2.41)yields λ(1)

3 = 0. Σct
σ (ω), shown in �gure 2.5 (left), is determined from (2.56) and the �rstrenormalisation ondition (2.40) gives λ(1)

1 = ñ−σ and λ(1)
2 = 0.Up to seond order the only dynami diagram ontributing is the one in �gure 2.4(right), whih we denote by Σ

(2,1)

Ũ1,σ
(ω). A stati term arises from the double tadpole diagramsimilar to the one in 2.4 (left), whih gives Σ

(2,2)

Ũ,σ
= Ũ2ñ2

−σ. We also get a ontribution to
Σmix (), whih omes from mixing the �rst order ounter-term ontribution and the �rstorder diagram,

Σmix,(2,1)
σ = −i Ũ

2λ
(1)
1

2π

∞
∫

−∞

dω G̃0
−σ(ω)2 = −Ũ2λ

(1)
1 ρ̃0

d,−σ(0, h) (2.57)It is shown in �gure 2.5 (middle). Another diagram, whih ould appear in priniple is thetadpole diagram with λ3 interation Σ
mix,(2,2)
σ = λ

(2)
3 Ũ2ñ−σ.
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(2,2)

Ũ ,σ
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2 = Σ
(2,2)

Ũ,σ
(0)′/Ũ2. This determines the renormalisedself-energy to seond order with all ontributions aording to (2.54). To larify how theseond additional Feynman rule would be inorporated we give the simplest diagram forthis term in �gure 2.5 (right), whih is atually of third order.

Σmix,(3,1)
σ = −i Ũ

3λ
(2)
2

2π

∞
∫

−∞

dω ωG̃0
−σ(ω)2. (2.58)Whilst for this ase it is straight forward to arry out the RPT one an imagine thatfor higher order alulations with larger number of standard and mixed diagrams it be-omes more and more umbersome to ompute all ontributions to the RPT. Third orderalulations have been disussed by Hewson (2001). It might be easier to alter the setupof the RPT slightly in order not to deal with all the ounter-terms separately and we willdisuss a possibility in the following setion.2.2.3 Alternative formulations and extensionsThe perturbation theory an be given in a di�erent formulation by inluding the �freeounter-terms� derived from Sc

0 into the propagator, whih then takes the form
Gr

σ,λ1,λ2
(ω) =

1

ω − ε̃d,σ + i∆̃σ + λ1 + λ2ω
. (2.59)Sine the ounter-term interation term Sc

λ3
has the same form as the standard interationterm, also these terms an be olleted and the perturbation theory arried out in Ũ1 ≡

Ũ + λ3. The renormalisation onditions beome self-onsisteny equations in that ase.Although suh a setup at �rst sight appears promising due the muh simpler strutureof the perturbation expansion it turns out that it is di�ult to arry out the expansionin this form. We had seen in the last setion that the ounter-term parameters inludeontributions to di�erent order in Ũ [f eq. (2.55)℄. The setup de�ned by (C.15) and the freepropagator (2.59) implies that ounter-term ontributions to all orders are inluded evenin the low order diagrams disussed in the last setion. In fat, if the exat expressionsof the ounter-terms, whih an be derived from the identity (2.38), were used in this



2.2 The Renormalised Perturbation Theory (RPT) 35approah the theory would formally lead bak to the bare perturbation theory and nothingnew would have been ahieved. More details for this kind of approah are desribed in theappendix C.The idea of expanding in an e�etive renormalised interation Ũ1 turns out to befruitful, when we onsider an RPT expansion, whih sums up a ertain lass of diagramsto all orders rather than all diagrams up to ertain order in Ũ . This is best illustrated forthe dynami transverse spin suseptibility χt(ω) as de�ned in equation (1.26), whih wean alulated by an RPA-like sum of repeated quasipartile sattering diagrams (Hewson2006). This is depited in �gure 2.7.PSfrag replaements −σ
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p−σ. Here the series in terms of repeated quasipartilesattering yields the expression

χt(ω) =
1

2

Πhσ
p−σ(ω)

1 − Ũhσ
p−σΠhσ

p−σ(ω)
, (2.60)with the appropriate e�etive interation Ũhσ

p−σ. We have introdued the pair propagator
Πhσ

p−σ(ω), whih is given by
Πhσ

p−σ(ω) = −
∫

dω1

2πi
G̃0

σ(ω + ω1)G̃
0
−σ(ω1). (2.61)It an be solved analytially and the expression is given in setion 3.4.2 in the next hapter.Note that Πhσ

p−σ(0) = ρ̃0
d(0). We still have to satisfy the renormalisation onditions (2.40)and (2.41), but as we have not alulated the self-energy or vertex this seems di�ult. Howan we therefore determine the quantity Ũhσ

p−σ? As illustrated by Hewson (2006) we anuse the exat stati result for the suseptibility from the �rst hapter (1.14) to determinethis quantity by equating the result for ω → 0 in (2.60) to (1.14). Hene, we �nd
Ũhσ

p−σ =
Ũ

1 + Ũ ρ̃0
d(0)

. (2.62)It turns out that the dynami suseptibility an be desribed quite aurately in suh aformulation on all energy sales (Hewson 2006).



36 Methods for strong orrelation physisFor the renormalised self-energy one an make a similar approximation and sum up therepeated sattering terms as shown in �gure 2.7,
Σr,ph

σ (ω) = Ũ2
1

∫

dω2

2πi
2χσ

s⊥(ω2)G̃
0
−σ(ω − ω2). (2.63)The proesses of spin �utuations taken into aount in suh a summation are likely to bethe most dominant ones in the Kondo regime. The e�etive interation Ũ1 has to be foundfrom the renormalisation ondition (2.41) for the full vertex, whih for this simple RPAlike approximation is just a sum of the terms as shown in �gure 2.7. From this we �nd

Ũ1 =
Ũ

1 + Ũ ρ̃0
d(0)

. (2.64)whih agrees with the earlier result for the suseptibility. In order to alulate the renor-malised self-energy Σ̃σ(ω) we still have to inlude the ounter-terms and in the moststraightforward approah is to only take the trivial ounter-terms Σct(ω) into aountand determine λ1 and λ2 by the ondition (2.40). Results for this kind of alulations willbe presented in hapter 3.An extension of this simple repeated sattering analysis an be given by onsidering aself-onsistent theory with fully dressed propagators. This is most onveniently desribedin the two-partile irreduible (2PI) framework and an approah based on a LuttingerWard funtional. We have desribed the details for suh an approah in appendix C.3.2.3 The Dynamial Mean Field Theory (DMFT)So far in this hapter we have onentrated on the desription of methods suitable forthe solution of impurity models like the AIM. Another subjet of this thesis is, however,to study strong orrelation e�ets in lattie models like the Hubbard model. As realizedby Metzner and Vollhardt (1989), and elaborated on by Müller-Hartmann (1989), it isenlightening for the understanding of orrelation e�ets in lattie models to study the limitof in�nite dimensions, d → ∞. With the appropriate saling of the hopping amplitude, itwas found that the self-energy beomes a loal quantity, i.e. does not depend on k anymore,but retains the full frequeny dependene. The limit thus generates a large simpli�ationwithout making the problem trivial. Based on these onsiderations an approah linkingthe solution for a lattie model to that of a loal model was developed, the dynamial mean�eld theory (DMFT). The essential idea of the DMFT is to map the lattie model to asingle site quantum impurity model embedded in an e�etive medium (Georges et al. 1996),whih is determined self-onsistently [also Loal Impurity Self-onsistent Approximation(LISA)℄. In ontrast to standard mean-�eld or Hartree Fok theory, DMFT fully takes intoaount loal quantum �utuations and hene the many-body harater of the problemis retained. One an show that DMFT is exat in the limit d → ∞. For details of thederivation of the main equations we refer to the review artile by Georges et al. (1996).



2.3 The Dynamial Mean Field Theory (DMFT) 37To be more spei�, we onsider the Hubbard model (1.29) whih is written onvenientlyin the imaginary time path integral formulation as
Z =

∏

i

∫

D(ci,σ, ci,σ)e−S[ci,σ(τ),ci,σ(τ)] (2.65)with the ation
S[ci,σ(t), ci,σ(t)] =

β
∫

0

dτ
∑

i,j,σ

ci,σ(τ)(δij
∂

∂τ
− tij − δijµ)ci,σ(τ) + U

∑

i

ni↑(τ)ni↓(τ). (2.66)The DMFT approah is based on deriving an e�etive ation for a speial lattie site,usually termed the �0�-site. This is ahieved by formally integrating out the degrees offreedom of the other lattie sites. The e�etive ation on the �0�-site reads
Se� = −

β
∫

0

dτ

β
∫

0

dτ ′
∑

σ

c†0,σ(τ)G−1
0 (τ − τ ′)c0,σ(τ ′) + U

β
∫

0

dτ
∑

i

n0,↑(τ)n0,↓(τ), (2.67)where we have not expliitly allowed for any kind of symmetry breaking. We have intro-dued the e�etive Weiss �eld (or dynamial mean �eld) G−1
0 (τ) for the �0�-site. In analogyto lassial mean �eld theory it has to be determined self-onsistently, but in ontrast tothe latter G−1

0 (τ) is funtion of τ , whih mimis the lattie dynamis. For a given G−1
0 (τ),

Se� in (2.67) determines the dynamis at the 0-site, whih is still an interating problem. Inthe DMFT approah the lattie self-energy is entirely loal and the lattie Green's funtionan be written in the form
Glat

k (iωn) =
1

iωn + µ− εk − Σlat(iωn)
. (2.68)From this we an de�ne the loal lattie Green's funtion Gloc(iωn) by

Gloc(iωn) :=
1

N

∑

k

Glat
k (iωn) =

∫

dε
ρ0(ε)

iωn + µ− ε− Σlat(iωn)
= HT[ρ0](ζ), (2.69)where ζ := iωn + µ − Σlat(iωn). HT[ρ0](ω) is the Hilbert transform of the free eletrondensity of states ρ0(ε) =

∑

k δ(ε− εk),
HT[ρ0](ζ) =

∫

dξ
ρ0(ξ)

ζ − ξ
. (2.70)In the derivation of the DMFT equations [see Georges et al. (1996)℄ one �nds quite gen-erally the Dyson-like relation between the e�etive Weiss �eld, the loal lattie Green'sfuntion and the self-energy,

G−1
0 (iωn) = Σlat(iωn) +

1

HT[ρ0](ζ)
= Σlat(iωn) +Gloc(iωn)−1. (2.71)



38 Methods for strong orrelation physisIn the DMFT framework the lattie self-energy Σlat(iωn) is the same as the self-energyof the e�etive impurity problem Σimp(iωn); also the Green's funtion of the e�etiveimpurity model and Gloc(iωn) oinide. As an e�etive impurity problem (2.67) we anonsider the AIM in the path integral formalism (2.29) with the e�etive ation
S = −

∑

σ

β
∫

0

dτ

β
∫

0

dτ ′ dσ(τ)G0(τ − τ ′)−1dσ(τ ′) + U

β
∫

0

dτ nd,↑(τ)nd,↓(τ) (2.72)where generally
G0(τ) =

1

β

∑

n

e−iτωn
1

iωn − εd −K(iωn)
. (2.73)with K(iωn) given in the earlier equation (1.6).By omparison of (2.72) with (2.67) one an formally identify G−1

0 (τ − τ ′) = G0(τ −
τ ′)−1. Therefore, the properties of the medium have to be enoded in the generally omplexand iωn-dependent hybridisation funtion K(iωn) (often denoted as omplex ∆(iωn)). Forthis reason it annot be identi�ed with just an imaginary onstant i∆, as for the impuritymodel with a �at ondution band density of states. In this framework we �nd thereforean expliit expression for the Weiss e�etive �eld

G−1
0 (iωn) = iωn + µ−K(iωn), (2.74)where one identi�es εd = −µ. This relates the DMFT approah (2.67) to an e�etive AIMas the orresponding impurity model to be studied.In pratie, we use a ertain input for the medium, K(0)(iωn), to alulate the self-energy of the orresponding e�etive impurity problem Σimp(iωn) with the NRG approah.This self-energy is identi�ed with the loal lattie self-energy Σlat(iωn) and used to alulatethe loal lattie Green's funtion with (2.69). From equation (2.71) we an then alulatethe new e�etive Weiss �eld G−1
0 (iωn) and K(1)(iωn) from (2.74). This loses the self-onsisteny yle, whih has to be iterated until onvergene, K(m)(iωn) = K(m+1)(iωn),is reahed. This approah is ompletely general and does not rely on a spei� density ofstates ρ0(ε). For the Bethe lattie with a semiirular density of states,

ρ0(ε) =
1

2πt2

√

4t2 − ε2, |ε| < 2t, (2.75)analyti expressions for the Hilbert transforms an be given and the equations simplify(Georges et al. 1996). In this thesis we employ the NRG as solver for the e�etive impu-rity problem, and therefore have to map a given hybridisation funtion K(iωn) onto theorresponding linear hain problem [f. equation (2.1)℄. A proedure to do this has beendevised by Bulla et al. (1997), and is also desribed by Bauer (2007) for di�erent ases.For situations with broken symmetry some of the expressions have to be modi�ed, but thegeneral setup is as desribed here.
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Chapter 3Field dependent quasipartiledynamis in the Anderson impuritymodel

Try to learn something about every-thing and everything about some-thing. Thomas H. Huxley

In the following three hapters, whih form the the seond part of the thesis, we presentresults for loally strongly orrelated eletrons in the Anderson impurity model (AIM). As aommon theme of this thesis we are interested in the situation with broken symmetry. TheAIM does not order spontaneously in any parameter range, it is, however, interesting tostudy its response to an external symmetry breaking. In this hapter we study the e�et ofa magneti �eld. The analysis is a ombination of analytial and numerial methods basedon the NRG and RPT framework. First we desribe the behaviour of the �eld dependentrenormalised parameters and show how the low energy response an be haraterised interms of them. In later setions we present dynami response funtion for higher energiesdedued from NRG and RPT alulations.3.1 Strongly orrelated eletrons in a �eldEletrons in strongly orrelated systems are partiularly sensitive to the appliation ofmagneti �elds. One reason is that strong orrelations are usually a onsequene of theinteration of eletrons with enhaned spin �utuations, and these �utuations ouplestrongly to a magneti �eld. Another reason is that there is a low temperature sale
T ∗ (T ∗ ≪ TF) indued whih plays the role of an e�etive Fermi temperature TF. Thee�ets of a magneti �eld H in general depend on the ratio of the two energy sales µBHand kBTF. In a weakly orrelated metal µBH/kBTF ≪ 1, but in a strongly orrelatedsystem the relevant ratio is µBH/kBT

∗, whih an be of order unity. This sensitivitymeans that a magneti �eld is an important tool in the experimental investigation ofstrongly orrelated metalli systems, suh as magneti impurities, quantum dots, heavy



42 Field dependent quasipartile dynamis in the Anderson impurity modelfermions and transition metal oxides. In the next setion we show how it is possible todesribe the quasipartiles in a magneti �eld in the Fermi liquid regime by �eld dependentparameters. We fous on the partile-hole symmetri Anderson model in the next setionsas in referene Hewson, Bauer and Koller (2006). The non-symmetri ase is studied in asimilar approah in Bauer and Hewson (2007a). The AIM (1.1) with the loal magneti�eld term (1.17) forms basis for the alulations. For the symmetri AIM, the alulationsan be arried out either diretly with the �eld dependent model or we an use the mappingto the negative U model, whih is not symmetri for �nite �eld, as explained in setion1.1.2. For the NRG alulation the latter has the advantage of preserving all spin andharge quantum numbers as a symmetry and thus reduing the numerial e�ort.First we disuss the �eld dependent behaviour of the renormalised parameters intro-dued earlier. One the renormalised parameters are known, the impurity spin and hargesuseptibility, the spei� heat oe�ient and the indued impurity magnetisation at T = 0for arbitrary magneti �eld an be expressed by substituting into the relevant exat formu-lae derived from a renormalised perturbation theory. The leading temperature dependentorretions to the suseptibility, magnetisation, the �nite ondutivity due to satteringfrom an impurity in a metalli host, and for the ondutane through a quantum dot willalso be alulated in a later setion. It is interesting to see how the response oe�ientsbehave when the �eld strength is inreased. A number of physial properties are foundto hange qualitatively in the strongly orrelated ase for magneti �eld strengths in therange 0 < gµBH < TK, where TK is the Kondo temperature. This should be a physiallyaessible magneti �eld range for many systems. The T 2 oe�ient of the magneti sus-eptibility, the ondutivity from a magneti impurity in the strong orrelation regime,and the ondutane through a quantum dot all hange sign in this magneti �eld range.We also desribe these systems beyond the low energy regime with the NRG andRPT method in setion 3.4. The approah developed here is a general one and is equallyappliable to other impurity models (Hewson et al. 2004) and to lattie models as will beseen in hapter 6. For lattie models, for whih dynamial mean �eld theory is appliable,similar NRG methods to those employed here an be used. It is important to bear inmind that the approah is not restrited to the NRG method, the relevant renormalisedparameters ould also be estimated using other theoretial tehniques, variational methodsfor example.3.2 Field dependent renormalised parametersFor the haraterisation of the low energy �xpoints of the AIM we had introdued renor-malised parameters ε̃d, ∆̃ and Ũ in setion 1.1. In setion 2.2.1 we de�ned them morerigorously in terms of the self-energy inluding an expliit dependene on the magneti�eld h. As �rst demonstrated by Hewson et al. (2004) the �eld dependent parameters anbe dedued from the low energy exitations in an NRG alulation. The details of how this



3.2 Field dependent renormalised parameters 43is ahieved are given in appendix B. In this setion we want to disuss the behaviour ofthese parameters, as the magneti �eld h is varied, fousing on the partile-hole symmetriase. Before disussing the �eld dependene of the parameters let us give the generalisationof some of the equations from the �rst hapter to the ase with magneti �eld. The lowenergy sale T ∗ is de�ned by 4T ∗ = π∆̃(0) in the following, suh that in the Kondo regime
T ∗ = TK. The Friedel sum rule (Friedel 1956, Langreth 1966) is appliable to eah spinomponent, and in terms of the renormalised parameters (2.34) it reads

nd,σ =
1

2
− 1

π
tan−1

(

ε̃d,σ(h)

∆̃(h)

)

. (3.1)For partile hole symmetry we an write ε̃d,σ(h) = −σε̃d(h). Thus from (3.1), we andedue the indued impurity magnetisation M(h) = m(h)/gµB at T = 0,
m(h) =

1

2
(nd,↑ − nd,↓) =

1

π
tan−1

(

ε̃d(h)

∆̃(h)

)

. (3.2)It is therefore spei�ed by the two parameters ε̃d(h) and ∆̃(h) that haraterise the non-interating quasipartiles. The free quasipartile density of states (1.13) generalises to
ρ̃0

d,σ(ω, h) =
∆̃(h)/π

(ω − σε̃d(h))2 + ∆̃2(h)
. (3.3)As ρ̃0

d,σ(0, h) is independent of the spin state we an drop the spin index σ for ω = 0. The�eld dependent spin suseptibility at T = 0 from equation (1.14) beomes
χs(h) =

1

2
ρ̃0

d(0, h)[1 + Ũ(h)ρ̃0
d(0, h)], (3.4)whilst the harge suseptibilities reads

χc(h) =
1

2
ρ̃0

d(0, h)[1 − Ũ(h)ρ̃0
d(0, h)]. (3.5)The orresponding transverse spin suseptibility χt(h) [zero applied �eld limit in the trans-verse diretion, f. equation (1.26)℄ is given by

χt(h) =
m(h)

2h
. (3.6)For the symmetri model ε̃d(h) is entirely magneti �eld driven it is onvenient to write itas ε̃d(h) = η̃(h)h. Then 2hη̃(h) is the Zeeman splitting of the impurity levels for the non-interating quasipartiles, and η̃(h) an be given the interpretation of a �eld dependentenhanement fator.Equation (3.4) for the suseptibility χs(h) has a term in Ũ(h). However, the susep-tibility χs(h) = ∂m(h)

∂h an also be derived by di�erentiating the expression (3.2) for themagnetisation whih depends expliitly only on the variables ε̃d(h) and ∆̃(h). Hene, the



44 Field dependent quasipartile dynamis in the Anderson impurity modelvalue of Ũ(h) is not independent of the other two parameters and we an derive a relationbetween them,
1 + Ũ(h)ρ̃0

d(0, h) =
∂ε̃d(h)

∂h
− ε̃d(h)

∆̃(h)

∂∆̃(h)

∂h
. (3.7)The proof that equation (3.4) for the suseptibility is exat depends on a Ward identity,so the relation (3.7) we have derived must be an alternative statement of this identity. Interms of η̃(h) = ε̃d(h)/h it beomes

1 + Ũ(h)ρ̃0
d(0, h) = η̃(h) + h

∂η̃(h)

∂h
− hη̃(h)

∆̃(h)

∂∆̃(h)

∂h
. (3.8)In the system with magneti �eld the expression of the Wilson ratio (1.16) in terms of therenormalised parameters reads

R(h) = 1 + Ũ(h)ρ̃0
d(0, h). (3.9)In �gure 3.1 we give a plot of the renormalised parameters as a funtion of the naturallogarithm of the magneti �eld, log(h/T ∗), for the strong oupling ase U/π∆ = 4.
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3.2 Field dependent renormalised parameters 45range with little variation inreases steadily to one for large �elds. For zero �eld in theKondo regime z has a small value, but with inreasing �eld the impurity spin is more andmore polarised, leading to a suppression of the spin �utuations and likewise the Kondoe�et. The quasipartiles are therefore �de-renormalised� from the h = 0 values by themagneti �eld, and for very large �eld h > U essentially non-interating behaviour (z = 1)is found. The trend an also be seen in the �eld dependent Wilson ratio R(h) in (3.9). Itis a ombination of all the renormalised parameters and shows a smooth transition from
R = 2 for h = 0 to R = 1 for large �eld. It is known from Bethe ansatz alulations(Tsvelik and Wiegmann 1983) that R(h) = 2 is independent of h in the Kondo model.This an be seen to be the ase in the results for R(h) shown in �gure 3.1 when theparameters orrespond to the loalised or Kondo regime. The loalised model, however,is only valid when the harge �utuations are ompletely suppressed. For very large �eldvalues h > U loal harge �utuations an be indued by the magneti �eld and, as thisregime is approahed, R(h) makes a rossover to the value R = 1 for non-interatingeletrons.In the limit h → 0, the �eld dependent enhanement fator for the magneti responseof quasipartiles η̃(h) is equal to η̃(0) = R(0) due to (3.8) and (3.9). Therefore, in theKondo regime, R(0) = 2, the quasipartiles have twie the non-interating value for �elddependent splitting showing the enhaned suseptibility towards exposure to a magneti�eld. For very large h, η̃(h) goes to one orresponding to a normal Zeeman splitting fornon-interating partiles. In the intermediate �eld regime, h ≃ T ∗, η̃(h) beomes fairlylarge before going down to one. Coming from large �elds this an be understood frommean �eld theory, where we an write

η̃mf = εd,↓(h)
mf/h = [εd + U(nd/2 +m(h)) + h]/h = 1 + Um(h)/h, (3.10)where we have used partile hole symmetry. This term inreases from one as h dereases asthe magnetisation does not derease muh in this regime [see �gure 3.2 (left)℄. Coming fromzero �eld the behaviour an be understood from the Friedel sum rule for the magnetisation(3.2) whih gives

η̃(h) =
∆̃(h)

h
tan(πm(h)) (3.11)As an be seen for the behaviour of the magnetisation in �gure 3.2 (left) in this regimethere is a sharp rise aompanied by a moderate inrease of ∆̃(h) whih leads to the stronginrease in η̃(h).It is not so straight forward to understand the behaviour of the renormalised quasipar-tile interation Ũ(h). At �rst sight it might seem surprising that in the intermediate �eldrange Ũ(h) is larger than the bare interation of the model. This does not imply, however,that the interation e�ets are beoming stronger. The e�ets of the interation on the lowenergy sale depend upon the ombination, Ũ(h)ρ̃0

d(0, h), and ρ̃0
d(0, h) falls o� rapidly with

h as ε̃d(h) moves away from the Fermi level. The ombination Ũ(h)ρ̃0
d(0, h) an be seen to
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Figure 3.2: Left: The impurity magnetisation m(h) for the symmetri model with U/π∆ =

3.0, together with R(h)/4, where R(h) is the Wilson ratio, plotted as a funtion of thelogarithm of the magneti �eld, ln(h/T ∗). Also shown for omparison are the orrespondingBethe ansatz results Tsvelik and Wiegmann (1983) for the �eld indued magnetisation forthe Kondo model. Right: The ratio −ρ̃0
d(h)

′/ρ̃0
d(0), where the prime indiates a derivativewith respet to h/T ∗, is shown for U/π∆ = 0.0, 0.5, 3.0 as a funtion of h/T ∗. The dashedline shows the asymptoti result as h→ 0, 3hπ
√

3/2T 2
K, for the Kondo model.derease monotonially with inrease of h, as disussed above for R(h). We an observethe enhanement of the e�etive interation Ũ(h), as the magnetisation is redued fromthe saturated value msat = 1/2 for large �eld. As the applied magneti �eld is reduedfrom the regime h > U , spin �utuations inrease and enhane the e�etive interation Ũ ,as in the random phase approximation (RPA), above the bare value U ,

ŨRPA(h) =
U

1 − Uρd(0, h)
. (3.12)This result orresponds to the enhanement of the suseptibility that one �nds from theRPA. If the magneti �eld is redued from a large value then Uρd(0, h) > 0 inreases andso ŨRPA(h) inreases. This is preisely what is seen in the large h regime in the resultsin �gure 3.1. As the magneti �eld is further redued the many-body orrelations areinreasingly e�etive in sreening the impurity so that Ũ(h) dereases from an enhanedvalue greater than U to a value 4TK as h → 0 when U > 2π∆. The inrease as seenwhen oming from the other side, i.e. from small magneti �elds, an be understoodas follows. The loalised model gives R(h) = 2 for all h, whih implies that Ũ(h) =

1/ρ̃0
d(0, h). From this result, and equations (3.3) and (3.2), the ratio Ũ(h)/π∆̃(h) for theloalised model an be expressed entirely in terms of the magnetisation and is suh that

Ũ(h)/π∆̃(h) = 1/ cos2(πm(h)). For h = 0, this orresponds to the strong orrelationresults Ũ(0)/π∆̃(0) = 1, as m(0) = 0, and for very large �elds where m(h) → 1/2 as
h→ ∞, it gives Ũ(h)/π∆̃(h) → ∞, orresponding to the fat that harge �utuations anonly be ompletely suppressed if U is in�nite. For a more extensive disussion we refer the



3.3 Low temperature response 47reader to the paper by Hewson, Bauer and Koller (2006).The magnetisation in terms of the renormalised parameters (3.2) an be ompared withexat results from Bethe ansatz alulations for the Kondo model (Tsvelik and Wiegmann1983) as shown in �gure 3.2 (left). It agrees with the the BA ansatz results over the �eldrange, where harge �utuations are not so important (Hewson, Bauer and Koller 2006),but starts to deviate for large h. Due to the harge �utuations, the approah to saturationis muh more rapid for the Anderson model than for the Kondo model, one h exeeds U .3.3 Low temperature responseWith the help of the �eld dependent parameters we an express the low order tempera-ture dependene for response quantities and study the behaviour of the oe�ients withmagneti �eld. We will onsider the suseptibility and magnetisation �rst.Magnetisation and SuseptibilityUsing a thermodynami identity one �nds (Hewson, Bauer and Koller 2006)
χs(T, h) = χs(0, h) − cχ(h)

(

T

T ∗

)2

, (3.13)with
cχ(h) = −(πT ∗)2

12

∂2ρ̃0
d(0, h)

∂h2
. (3.14)On integrating these results with respet to h we an derive a similar relation for theindued magnetisation,

m(T, h) = m(0, h) − cm(h)

(

T

T ∗

)2 (3.15)where
cm(h) = −(πT ∗)2

6

∂ρ̃0
d(0, h)

∂h
. (3.16)In �gure 3.2 (right) we plot the results for −ρ̃0

d(h)
′/ρ̃0

d(0), whih is proportional to cm(h),for U/π∆ = 3.0, 0.5, 0.0 in the range 0 < h/T ∗ < 2.5. It an be seen that all three urveshave a maximum whih implies that for a spei� magneti �eld hmp the oe�ient cm(h)is maximal and therefore the magnetisation dereases most signi�antly with inreasingtemperature in this regime. For the strong oupling regime we see in �gure 3.2 (right) that
hmp . 0.5T ∗ and that is the �eld region in �gure 3.2 (left), where the magnetisation hasthe steepest rise. Another onsequene of the fat that all three urves have a maximumis that cχ(h) in (3.14) beomes zero, and hanges from positive to negative sign in thisrange. Hene, from this �eld hmp on the low temperature suseptibility inreases with thetemperature. This ours for h signi�antly smaller than T ∗ = TK in the Kondo regime.



48 Field dependent quasipartile dynamis in the Anderson impurity modelLow Temperature Transport in an Arbitrary Magneti FieldIn order to determine the T 2-dependene of linear response transport oe�ients we needto alulate the renormalised self-energy Σ̃σ(ω, T, h) both to order ω2 and to order T 2. Wealulate this from the renormalised perturbation expansion as explained in setion 2.2.2taken to order Ũ2(h). This takes full aount of the quasipartile sattering and givesthe exat result of Yamada (1975a) for h = 0. Note that no ounter-terms have to beonsidered for the T 2 and ω2 oe�ients. In order to dedue the ω2 term we onsider theseond order diagram as given in �gure 2.4 with Ũ → Ũ(h),
Σr,(2)

σ (ω) =
Ũ(h)2

(2π)2

∫ ∫

dω1dω2G̃
0
σ(ω − ω1)G̃

0
−σ(ω1 + ω2)G̃

0
−σ(ω2), (3.17)where the free ausal Green's funtion for the symmetri model with magneti �eld for

T = 0 in terms of renormalised parameters has the form
[G̃0

σ(ω)]−1 = ω + σε̃d(h) + sgn(ω)i∆̃(h). (3.18)The orretions to order ω2 an be dedued from the seond derivative of the self-energywith respet to ω evaluated at ω = 0 and T = 0. Using
∂2G̃0

σ(ω)

∂ω2
= 2G̃0

σ(ω)3 − 2πiδ′(ω)ρ̃0
d(ω, h) −

8π2i

∆̃(h)
ρ̃0

d(ω, h)
2δ(ω)σε̃d(h) (3.19)we �nd after some algebra

Σ̃σ(ω, 0, h) = −c(h)ω2
[

i− (2 + α̃ω(h))σε̃d(h)/∆̃(h)
]

, (3.20)where
c(h) =

πŨ2(h)[ρ̃0
d(0, h)]

3

2
, α̃ω(h) =

2I(h)∆̃(h)

ξ̃(h)[ρ̃0
d(0, h)]

2
. (3.21)We have introdued ξ̃(h) = πρ̃d(0, h)ε̃d(h) and I(h) is the integral

I(h) =

∞
∫

−∞

∞
∫

−∞

G̃0
↓(ω

′′)G̃0
↓(ω

′′ + ω′)[G̃0
↑(ω

′)]3
dω′′

2π

dω′

2π
, (3.22)whih an onveniently be evaluated numerially.The orresponding result for the renormalised self-energy to order T 2 an be derivedusing the Sommerfeld expansion. The alulation an be performed by using for eahinternal propagator G̃0

σ(ω) in the T = 0 diagrammati expansion an additional orretionterm (Hewson 1993a, hapter 5),
− (πT )2

3

δ′(ω)∆̃(h)

(ω + σε̃d(h))2 + ∆̃2(h)
. (3.23)



3.3 Low temperature response 49The result for the renormalised self-energy to order T 2 for ω = 0 is
Σ̃σ(T, 0, h) = −c(h)(πT )2

[

i+ (1 + α̃T (h))σε̃d(h)/∆̃(h)
]

, (3.24)where the parameter α̃T (h) is given by
α̃T (h) =

∆̃(h)

6ξ̃(h)ε̃d(h)

[

1 − ε̃d(h)

∆̃(h)
tan−1

(

ε̃d(h)

∆̃(h)

)

(

4 +
∆̃(h)

ξ̃(h)ε̃d(h)

)]

. (3.25)We an now apply these results to the alulation of transport oe�ients.Appliation to magneti impuritiesThe ontribution to the ondutivity σ(T, h) from the sattering of isolated impuritiesdesribed by an AIM is given by (Yamada 1975a)
σ(T, h) = σ0

∑

σ

∫ ∞

−∞

1

ρd,σ(ω, T, h)

(

−∂f(ω)

∂ω

)

dω, (3.26)where ρd(ω, T, h) = ∆̃(h)ρ̃d(ω, T, h)/∆, and ρ̃d(ω, T, h) is the spetral density of the quasi-partile Green funtion G̃d(ω, T, h) inluding the renormalised self-energy. The Sommerfeldexpansion gives for (3.26) to seond order in T on using the renormalised self-energy toalulate the quasipartile spetral density ρ̃d(ω, T, h) (Hewson, Bauer and Koller 2006),
σ(h, T ) = σ(h, 0)

{

1 + σ2(h)

(

πT

∆̃(h)

)2

+ O(T 4)
}

, (3.27)where σ(h, 0) = 2σ0/cos
2(πm(h)) and σ2(h) is given by
σ2(h) =

cos2πm(h)

3

[

1 + C(h)(R(h) − 1)2
]

. (3.28)The oe�ient C(h) reads
C(h) = 2cos2(πm(h)) − sin2(πm(h)) [1 − 3α̃T (h) + α̃ω(h)] . (3.29)In �gure 3.3 (left) we show the seond order oe�ient σ2(h) plotted over log(h/T ∗) for arange of parameters (U/π∆ = 0.5 − 4).For zero �eld the ondutivity due to impurity sattering rises with temperature as is wellknown (Yamada 1975a). When h is inreased, σ2(h) dereases and tends to zero for veryhigh �elds, so that the low temperature ondutivity beomes temperature independent.The impurity level is then shifted out of the range of the thermally exited states in theondution band so that there is negligible impurity sattering. We note for the strongoupling ases, where there is a loal moment (U/π∆ = 2, 4), that the oe�ient σ2(h)hanges sign for a ertain ritial �eld hc, with hc ≃ 0.5T ∗. The mathematial reason forthis behaviour is disussed in Hewson, Bauer and Koller (2006). Physially, when oming
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Figure 3.3: Left: Field dependent oe�ient σ2(h) from (3.28) for the seond order temper-ature expansion of the ondutivity. Right: Field dependent oe�ient G2(h) for the se-ond order temperature expansion of the ondutane (3.32). Weak oupling (U/π∆ = 0.5)up to strong oupling (U/π∆ = 4) is onsidered.from larger temperatures it is the spin �ip sattering of the loal moment that auses theresistivity ρ(T ) = 1/σ(T ) to rise as the temperature is lowered, leading to a resistaneminimum and the Kondo e�et. Perturbation theory shows that spin-�ip sattering givesa diverging amplitude for T ≃ T ∗. The behaviour (harateristi for zero �eld) is thenstarting from T = 0 a (quadrati) inrease in the ondutivity with rising temperature toa maximum (around T ∗) and from there on a derease, when other proesses like phononsattering are taken into aount. Likewise the resistivity dereases quadratially from
T = 0 to the famous minimum and then inreases again. The situation hanges for astrong �eld, sine for a mainly polarised impurity spin spin-�ip sattering proesses arestrongly suppressed, and therefore a minimum in the resistivity ρ(T ) = 1/σ(T ) might notour anymore. The hange in sign of the temperature dependene for a ertain magneti�eld for the behaviour starting from T = 0 might therefore be onneted to the fat thatthe resistivity in the strong �eld diretly inreases with temperature. As a onsequenewe would not observe a Kondo minimum anymore. To our knowledge, this e�et has notbeen seen experimentally, but for magneti impurities systems with a very low Kondotemperature it might be feasible to put the result to an experimental test.Appliation to quantum dotsIn the limit of linear response the equilibrium value of the one-eletron Green funtionan be used to alulate the di�erential ondutane G = dI/dV through a quantum dot(Ferry and Goodnik 1997),

G(T, h) =
G0∆

2

∑

σ

∫

dωπρd,σ(ω, T, h)

(

−∂nF(ω)

∂ω

)

, (3.30)



3.4 Beyond the Low Energy Regime 51where nF is the Fermi funtion and G0 = e2/π~ with Plank's onstant ~. In the lowtemperature regime we an again apply the Sommerfeld expansion to obtain the leadingorder �nite temperature orretions to order T 2 (Hewson, Bauer and Koller 2006),
G(T, h) = G(0, h)

(

1 −G2(h)

(

πT

∆̃(h)

)2
)

, G(0, h) = G0 cos2(πm(h)), (3.31)and
G2(h) =

cos2(πm(h))

3

{

cos2(πm(h))
[

1 + 2(R(h) − 1)2
]

− sin2(πm(h))
[

3 + (R(h) − 1)2(1 + 2αω(h) − 6αT (h))
]

}

.In �gure 3.3 (right) the �eld dependene of G2(h) is shown. Note that we have inluded aminus sign before the T 2 term in (3.31), so that the similar behaviour in �gures 3.3 and3.3 (right) atually orresponds to opposite temperature dependene. This is due to theapproximate inverse relation between the two systems, if the hybridisation V = 0 for animpurity, there is no sattering and hene in�nite ondutivity, whereas if V = 0 for thequantum dot there is no urrent and hene in�nite resistivity.The temperature dependene and its saling with TK for zero magneti �eld has beenobserved experimentally by Goldhaber-Gordon et al. (1998a). In �nite �eld there is a signhange in this leading temperature dependene at a values of the magneti �eld 0 < h < T ∗.A sign hange in the seond term in the Sommerfeld expansion of equation (3.30) ourswhen ρd hanges from a loal maximum to a minimum (Hewson, Bauer and Koller 2006).Note that this e�et, in ontrast to the ase disussed in the last setion, is not unique tothe Kondo regime and an also our for weak oupling. A qualitative explanation of thissign hange is that the loal spetral density at the Fermi level is suppressed with inreasingmagneti �eld. At higher �elds when the spetral density develops two peaks then there aremore thermally exited states whih an ontribute to an inrease of the ondutane. Thistemperature dependene ould be experimentally observable, sine estimates of the Kondotemperature are of the order 300mK orresponding to magneti �elds in the experimentalrange (Kogan et al. 2004). A di�ulty might be that the overall response is redued bythe cos2(πm(h)) fator in equation (3.31).3.4 Beyond the Low Energy Regime3.4.1 NRG methodWe an use the extension of the NRG method to alulate the dynami response fun-tions, as explained in setion 2.1.2, to look at the behaviour of the model in an arbi-trary magneti �eld on higher energy sales. In doing so it is important to use one ofthe density matrix extensions as the standard NRG approah gives results whih onsid-erably underestimate the shift of the high energy spetral weight with the variation of



52 Field dependent quasipartile dynamis in the Anderson impurity modelmagneti �eld. We also use the approah, in whih the self-energy is dedued from thealulation of higher F -Green's funtions. It an be shown in detail that the magneti-sation obtained from integrating the density matrix improved spetra up to the Fermienergy agrees very well with results obtained from stati NRG expetation values or theexpression using renormalised parameters (3.2) in the weak and strong oupling regime(Hewson, Bauer and Koller 2006). In �gure 3.4 (left) we give results for the spin up partof the d-site spetral density ρd,↑(ω) = − 1
π ImGd,↑(ω

+) for a strong oupling situation(U/π∆ = 4) for various values of the magneti �eld h.
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Figure 3.4: Left: Strong oupling (U/π∆ = 4) spetral density of the d-site Green funtion
ρd,↑(ω) for various magneti �elds h. The energy sale is given by 4TK = π∆̃. Right:Quasipartile peak for the spetral density of the d-site Green funtion ρd,↑(ω). The energysale on the left side is set by half the bandwidth D = 1 and on the right ω-axis is saledwith TK.The shift of the spin-up Kondo resonane from the Fermi level with inrease of magneti�eld, whih is almost impereptible on the plot on the left hand side, is aompanied bylarge shifts of the spetral weight on the higher energy sales as the impurity is magnetiallypolarised. In �gure 3.4 (right), we fous on the e�et of the magneti �eld on the thequasipartile (Kondo) resonane. The shift of the resonane from the Fermi level (ω = 0)with inreasing magneti �eld values is learly seen on this higher resolution energy saleused for this plot. As the peak shifts, its height dereases and the resonane beomesbroader. For even larger �elds than shown here the peak merges with the lower atomilimit peak seen in �gure 3.4 (left). Note that the peak form is asymmetri with logarithmitails, similar to the results of Rosh et al. (2003), obtained using the perturbative RG forthe Kondo model for large magneti �elds. However, some of the asymmetry in the resultsmust be attributed to the logarithmi broadening sheme (2.12).If −εp(h) denotes the position of the quasipartile peak in the spetral density for aspin up eletron, then the orresponding value for non-interating eletrons (U = 0) is halfthe Zeeman splitting, ∆Z = 2h. An exat expression for εp(h)/h in the limit h → 0 has



3.4 Beyond the Low Energy Regime 53been derived by Logan and Dikens (2001),
lim
h→0

εp(h)

h
=

R

1 + b∆z2
, (3.32)where R is the Wilson ration and b is the urvature of the imaginary part of the self-energyat ω = 0. The value of b an be alulated from the renormalised perturbation expansion(Hewson 2001) and the result (3.32) written as

lim
h→0

εp(h)

h
=

R

1 + (R − 1)2/2
. (3.33)This ratio, therefore, varies from one in the non-interating ase (R = 1) to 4/3 in theKondo limit (R = 2). Note that this is a substantial redution from the free quasipartilevalues η̃(0) = 2. It is not straight forward to obtain a preise estimate of b or the value of

εp(h) from the NRG spetra as they are sensitive to parameters of the logarithmi saleGaussian broadening (2.12) whih is used to obtain a ontinuous spetrum on all energysales from the disrete results. However, if the broadening is modi�ed to Lorentzian peakswith onstant width for the very low energy sales the asymptoti results an be on�rmed.We have estimated the ratio εp(h)/h from the NRG spetra for higher magneti �eldvalues and �nd that it inreases monotonially with h and exeeds the value of 2 beforethe peak merges at high �eld values into the atomi limit peaks. There have been other esti-mates of the h-dependene of this ratio (Moore and Wen 2000, Costi 2000, Logan and Dikens2001), but these di�er markedly aording to the method of alulation. On the basis ofa Bethe ansatz alulation of the spinon spetrum for the Kondo model, Moore and Wen(2000) �nd that εp(h)/h < 2 in all ases and onjeture that the value of 2 is the high�eld asymptoti limit. It is possible that this is a feature of the loalised model, whenharge �utuations are ompletely suppressed. There is some evidene in support of thisin our results in that, as we suppress the harge �utuations on inreasing the value of Uthrough the values U/π∆ = 2, 3, 4, the ratio εp(h)/h inreases less rapidly with inreaseof h. The ratio only begins to exeed the value of 2 roughly at the point when harge�utuations set in and R(h) begins to di�er signi�antly from the value of R(h) for theloalised model, R(h) = 2. Costi (2000) has also done NRG alulations for a loalisedmodel and �nds a ratio lose to but always less than 2. Using the loal moment approxi-mation Logan and Dikens (2001) have also estimated the ratio εp(h)/h and �nd an evenmore marked inrease in the ratio with inrease of h to values suh that εp(h)/h > 2.The saling of the ratio εp(h)/h with the Kondo temperature has also quantitatively beenstudied (Hewson, Bauer and Koller 2006).3.4.2 RPT methodAs seen in the last setion we ould give aurate results for the spetral funtions with theNRG method. In this setion we would like to use the renormalised perturbation theory



54 Field dependent quasipartile dynamis in the Anderson impurity modelto alulate dynami response funtions. The theory gives asymptotially exat results forthe ω dependene for the self-energy, when we onsider a seond order expansion in Ũ .Here we would like to see to what frequenies we an extend the desription by alulatingthe relevant diagrams in the RPT expansion. The quality of the approximation an begauged with the NRG results. We will start by onsidering alulations for the dynamispin suseptibilities, where it has been shown that the RPT an give very aurate results(Hewson 2006).Dynami SuseptibilitiesWe alulate the RPT approximation for the dynami transverse spin suseptibility in aseries of repeated quasipartile sattering as desribed in setion 2.2.3 and disussed byHewson (2006). This is reminisent of an RPA approximation, the propagators, however,are expressed in terms of renormalised parameters. Here, we fous on the transverse spinsuseptibility χt(ω, h), although the method is also appliable for other suseptibilities(Hewson 2006). The diagrammati expression was given in �gure 2.7, and we want togeneralise these earlier results to the ase with a magneti �eld. Hene, we de�ne the �elddependent the pair propagator Πhσ
p−σ(ω, h) as in equation (2.61),

Πhσ
p−σ(ω, h) = −

∫

dω1

2πi
G̃0

σ(ω + ω1)G̃
0
−σ(ω1). (3.34)The analyti solution is

Πhσ
p−σ(ω, h) =























−sgn(ω)
(

1
iπ

1
ση̃h+i∆̃sgn(ω)

+ 1
2π∆̃

log
(

ση̃h+isgn(ω)∆̃

−ση̃h+isgn(ω)∆̃

))

for ω = 2η̃h

− sgn(ω)
iπ

[

log
“

ω−ση̃h+isgn(ω)∆̃

ση̃h+isgn(ω)∆̃

”

ω−2ση̃h −
log

“

ω−ση̃h+isgn(ω)∆̃

−σηh+isgn(ω)∆̃

”

ω−2ση̃h+2isgn(ω)∆̃

]

otherwise.Note that Πh−σ
pσ (ω, h) = Πhσ

p−σ(−ω, h) as an be easily seen, also that for ω = 0 we �nd
Πhσ

p−σ(0, h) =
tan−1

(

ε̃d,σ

∆

)

πε̃d,σ
, (3.35)where we use ε̃d,σ = ση̃h. The full series for χt(ω, h) is obtained as

χt(ω, h) =
1

2

Πhσ
p−σ(ω, h)

1 − Ũhσ
p−σ(h)Πhσ

p−σ(ω, h)
. (3.36)The e�etive, renormalised vertex Ũhσ

p−σ(h) an be determined as desribed in setion 2.2.3with the help of the exat stati result. In the ase with �nite �eld we have as in (3.6),
χt(0, h) =

m(h)

2h
=

1

2πh
tan−1(η̃h/∆̃(h)), (3.37)



3.4 Beyond the Low Energy Regime 55where we have used the expression for the magnetisation (3.2) in terms of the quasipartileparameters. This yields for the e�etive interation
Ũhσ

p−σ(h) =
πh(η̃ − 1)

tan−1(η̃h/∆̃(h))
. (3.38)Note that there is no expliit dependene on Ũ(h) in this ase. Sine, however, the �elddependent renormalised parameters are not independent as seen in equation (3.8), thedependene on Ũ(h) an enter expliitly. In the limit h→ 0 we �nd with

lim
h→0

η̃(h) − 1 = Ũ ρ̃0
d(0, 0) (3.39)that

Ũhσ
p−σ(0) =

Ũ

1 + Ũ ρ̃0
d(0, 0)

, (3.40)as before in equation (2.62).In �gure 3.5 we show RPT results for the ase U/π∆ = 4 for the imaginary part of
χt(ω, h) (ph-RPT) in omparison with orresponding results from an NRG alulation.
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Figure 3.5: The imaginary part of the transverse suseptibility h = 0 (left) and h = TK(right). The renormalised perturbation theory results (ph-RPT) are in good agreementwith NRG results over the whole frequeny range.We an see in the plots that for zero �eld (left) that the results agree remarkably wellover the full frequeny range shown. Also in the ase of �nite �eld, h = TK, whih isshown on the right hand side the urves agree very well apart from the disrepany in thepeak height. The NRG alulation for the suseptibility is based on the omplete Anders-Shiller basis. One �nds that both the RPT result and the NRG results satis�es the sumrule relating the integral over Imχt(ω, h) to the magnetisation.In the artile by Hewson (2006) it is shown that the RPT results give an auratedesription of the spin and harge suseptibilities for zero and �nite arbitrary magneti�eld values H, and for frequenies ω extending over a range signi�antly larger than theKondo temperature TK.



56 Field dependent quasipartile dynamis in the Anderson impurity modelApproximations for the renormalised self-energyWe would like to give a desription of the Kondo resonane in magneti �eld suh as in�gure 3.4 (right) in terms of the RPT. A �rst approximation for the low energy spetrumis given by free the quasipartile spetrum ρ̃0
d(ω) as given in equation (1.13). As explainedin setion 2.2 orretions an be inluded via a renormalised self-energy Σ̃σ(ω). In orderto ompare the quality of the RPT approximation for Σ̃σ(ω) we would like to ompare itwith a di�erent result. If the original self-energy of the problem Σσ(ω, h) is known, Σ̃σ(ω)an be expressed as

Σ̃σ(ω) = zσ(h)

(

Σσ(ω, h) − ΣR
σ (0, h) − ω

∂

∂ω
ΣR

σ (0, h)

)

. (3.41)In the following we will use results for Σσ(ω, h) dedued from NRG alulation and equation(3.41) to ompare with RPT results.In �gure 3.6 (left) we show the full NRG spetrum (dot-dashed line) for a strongoupling ase U/π∆ = 4 for zero �eld. To see that the RPT approah is in prinipalvalid on all energy sales we have dressed the non-interating quasipartiles ρ̃0
d(ω) with arenormalised self-energy as given in (3.41) and added as �RPT� in �gure 3.6 (left).
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Figure 3.6: Left: Comparison of strong oupling spetra: Renormalised parameters (RP)and spetrum (1.13), Renormalised perturbation theory with full renormalised self-energy(RPT) (3.41) and Numerial Renormalisation Group (NRG). Right: Comparison of thelow energy behaviour of the one-partile spetral density for partile hole symmetri aseand U/π∆ = 4 alulated in di�erent RPT approximations and the NRG result.We an see that full agreement with the NRG urve is found. Note that this is not justa trivial rewriting of the propagator, sine the renormalised parameters are not alulatedfrom the self-energy, but from the low lying exitations at the �xed point. We havealso inluded the free quasipartile spetrum ρ̃0
d(ω) (3.3) in terms of the renormalisedparameters (RP), whih is seen to desribe the very lowest energy behaviour, namely theKondo resonane.



3.4 Beyond the Low Energy Regime 57The simplest dynami orretion to the free quasipartiles from an RPT alulationomes from the seond order (SO) diagram [see �g. 2.4 (right)℄,
Σr,(2)

σ (ω) = −Ũ2

∫

dω2

2πi
Πhσ

p−σ(ω2, h)G̃
0
σ(ω − ω2). (3.42)The pair propagator Πhσ

p−σ(ω, h) is given as in (3.34). As mentioned before this gives theasymptotially exat ω2 behaviour for the imaginary part. The orresponding renormalisedself-energy is obtained by inluding the ounter-terms, as well. As explained in setion2.2.2 to this order we only need to take into aount the trivial ounter-terms Σct
σ (ω) =

−[λ1,σ +λ2,σω]. In the �eld dependent ase we atually get a �nite ontribution to λ3 fromthe vertex diagrams as shown in �gure 2.6. This gives, however, no dynami ontributionto the renormalised self-energy as λ3 = O(Ũ(h)2). The renormalised self-energy to seondorder is then given by
Σ̃(2)

σ (ω) = Σr,(2)
σ (ω) − [λ1,σ + λ2,σω], (3.43)where λ1,σ and λ2,σ are determined by equation (2.40). Finite order expansions to higherorder extend the frequeny range where the renormalised self-energy gives an auratedesription. A di�erent way of extending the perturbative orretions is to inlude aertain lass of diagrams. As illustrated in the last setion this gave aurate RPT resultsfor the transverse spin suseptibility in terms of a repeated quasipartile sattering series.As well known from the study of metals near a magneti transition and the analysis of theKondo problem, spin �utuations are the ruial proesses in this regime. Mathematially,the simplest formulation for that is an RPA-like repeated sattering series, where a typialterm for the self-energy is diagrammatially depited in �gure 2.7. The renormalised self-energy orresponding to this proess is given by (Bauer et al. 2007a)

Σr,ph
σ (ω) = Ũ2

1

∫

dω2

2πi
2χσ

t (ω − ω2, h)G̃
0
−σ(ω2), (3.44)with χσ

t (ω, h) as given in equation (3.36) with Ũhσ
p−σ replaed by Ũ1. It is not diretlylear for this approah where an in�nite series of diagrams is onsidered what ounter-terms have to be inluded. For the most straight forward expression for the renormalisedself-energy Σ̃ph

σ (ω) in this ase we only inlude the trivial ounter-terms Σct
σ (ω). Therenormalised self-energy in this approximation of repeated partile-hole sattering Σ̃ph

σ (ω)is then given by an equation like (3.43) and again the parameters λi,σ are determined bythe renormalisation onditions (2.40). Suh a proedure is not rigorous, but it is adoptedhere as a �rst strategy to test this kind of ph-RPT approximation. A formally moresatisfatory sheme for alulations with in�nite series of diagrams an be given in termsof a self-onsistent theory derived from a Luttinger Ward funtional. This is desribed inappendix C.3 and remains for future researh to be investigated.We still have not spei�ed the e�etive interation Ũ1. This an be done by alulatingthe full renormalised vertex and using the renormalisation ondition (2.41). We proeed



58 Field dependent quasipartile dynamis in the Anderson impurity modelhere as outlined in setion 2.2.3, where it is argued that for this simple RPA like approx-imation the full vertex is just a sum of the terms shown in �gure 2.7. From this we �ndwith (3.35) and the ondition (2.41) that
Ũ1(h) =

Ũ(h)

1 + Ũ(h)
πε̃d,σ

tan−1(ε̃d,σ/∆̃σ(h))
. (3.45)This redues to the earlier result (2.64) in the limit h → 0. Note that this expression(3.45) is in general di�erent from expression (3.38) used for the dynami suseptibilities.The numerial omparison, however, shows that the orresponding values are very similar.Results for the dynamisIn the following we ompare

• results derived from the renormalised self energy of the seond order diagram (SO-RPT), f. equation (3.43),
• results derived from the renormalised self energy and the repeated quasipartile sat-tering (ph-RPT), f. equation (3.44),
• the renormalised self-energy dedued from an NRG alulation and equation (3.41).We onsider the strong oupling ase U/π∆ = 4 �rst for zero magneti �eld, h = 0. In�gure 3.7 (left) we ompare the results for the real part of the renormalised self energy forthe alulations spei�ed above.
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Figure 3.7: Comparison of the dynamis behaviour of the real part (left) and imaginarypart (right) of the renormalised self-energy alulated with seond order RPT (SO-RPT),repeated partile hole sattering RPT (ph-RPT) and NRG.We �nd that that for small ω the two perturbative approximations agree, but start todeviate for ω > 2TK. The slope for the real part of the seond-order perturbation theory



3.4 Beyond the Low Energy Regime 59(SO-RPT) is larger than the repeated partile hole series (ph-RPT); the exat asymptotibehaviour, (1 − z)ω, found by the NRG alulated ReΣ̃σ(ω) is not reahed by either.Similarly, we ompare the imaginary part of the renormalised self-energy as shown in�gure 3.7 (right). For small ω we �nd a good agreement for the SO-RPT self-energy theph-RPT self-energy and the one alulated from (3.41) and the NRG. However, as soon asthe Kondo sale is reahed the approahes give ontributions of quite di�erent magnitude,where the smallest one is found for the repeated sattering diagrams.In the earlier �gure 3.6 on the right, we ompare the resulting low energy spetrafor free quasipartiles based purely on the renormalised parameters (RP), the two RPTapproximations and the diret NRG result. For small ω all results agree well. The freequasipartile spetrum (RP) falls o� too rapidly as ompared with the NRG result. Bothof the two RPT approximations give orretions towards higher energies, but it remainsinonlusive whih of the two is the better approximation for larger ω. It is useful, therefore,to study the situation with a magneti symmetry breaking in whih eah omponent ofthe spetral density departs from the Fermi energy.Therefore, we turn our attention now, for the same strong oupling situation with
U/π∆ = 4, to the �nite �eld ase. For h/TK = 1 we an see the results for the spetraldensity alulated with the di�erent RPT approximations in �gure 3.8 (left).
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Figure 3.8: Strong oupling spetra in omparison for h/TK = 1 (left) and for h/TK = 4(right).Unlike in the ase of zero �eld the results for the free quasipartile propagator (RP) is notat all in agreement with the NRG spetrum. It does not inlude any suppression of thepeak height typial for �nite magneti �eld. In ontrast, one an see that the seond orderperturbation theory (SO-RPT) gives a dynami orretion in the right diretion, albeit toosmall, whereas the repeated proess (ph-RPT) renders a dynami orretion of the rightmagnitude. Di�erenes in the peak height are visible, but they are rather small. We ansee that, whilst for the low energy �ank of the peak the agreement is very good, for the



60 Field dependent quasipartile dynamis in the Anderson impurity modelhigh energy side the RPT results beome inaurate. This, however, is expeted, sine forhigher energies other proesses, suh as harge �utuations, will start to play an importantrole and need to be inluded in the renormalised self-energy.In order to understand the disrepany between the di�erent approximations in termsof the orresponding renormalised self-energy, we plot them in the ase h/TK = 1 in �gure3.9.
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Figure 3.9: Frequeny dependene of the real part (left) and imaginary (right) of therenormalised self-energy for h/TK = 1.Generally, we �nd that whilst the SO-RPT self-energy assumes greater values for higherenergies, for small energies, ω < 2TK, there are larger ontributions from the ph-RPTseries, whih are also found in Σ̃σ(ω) as omputed from (3.41) with the NRG. This e�et isseen more pronouned in the imaginary part in �gure 3.9 (right). These ontributions areimportant for the orretion of the position and width of the Kondo resonane in a �nite�eld starting with �eld dependent renormalised parameters. Sine we �nd good agreementbetween the ph-RPT and the NRG result we onlude that up to these energies the hosenrepeated quasipartile series inludes the most important ontributions for energies up to
TK (Bauer et al. 2007a).It is interesting to see up to what magnitudes of �eld strength the RPT approximationagrees well with the NRG results. For a quite large �eld, h/TK = 4, we display results forthe spetral density in �gure 3.8 (right). One an see that the ph-RPT agrees quite wellwith the NRG result. Di�erenes in the peak form of RPT and NRG an be attributed tobroadening e�ets. The interpretation of this behaviour an in a similar way be understoodas in the above ase for h/TK = 1. At higher �elds suh good agreement is not ahievedanymore, and the RPT desription is less satisfatory. At suh �eld strengths, however,the Kondo resonane is already suppressed substantially.Our onlusion from these onsiderations is, that for the low energy behaviour and nottoo large magneti �elds h . 4TK, the most important ontributions to the renormalised



3.4 Beyond the Low Energy Regime 61self-energy are inluded in the repeated sattering proesses shown in �gure 2.7. In thepresentation here we have deliberately foused on these proesses, although other series,suh as the ones representing longitudinal spin �utuations or harge �utuations ould bealulated in a similar way. Suh alulations have been arried out and analysed, but itwas found that the e�et of inluding these does not alter the results muh.Both the NRG as well as the RPT alulations an be extended to the non-symmetriAIM with magneti �eld. The main di�erenes for the ase of a magneti �eld in situa-tions without partile-hole symmetry is that the wavefuntion renormalisation fator zσ(h)depends on the spin index σ, and as a onsequene so does the e�etive resonane width
∆̃σ(h), so the equations given earlier for the partile-hole symmetri model have to begeneralised. The details for this are given in referene Bauer and Hewson (2007a).In summary, we have shown in this hapter that the methods of NRG and RPT anbe used for the desription of the AIM in a magneti �eld. We showed that the mag-netisation and the stati response funtions an be well desribed in terms of the �elddependent renormalised parameters. We have used these parameters to alulate the dy-nami transverse spin suseptibilities in the RPT formulae and we �nd exellent resultswhen ompared with those obtained from a diret NRG alulation. It was also shown thata good approximation for the renormalised self-energy for frequenies up to the order ofthe Kondo temperature ould be dedued by fousing on the transverse spin �utuationspart in terms of renormalised quasipartiles. The omparison of resulting spetral funtionfor one spin omponent in a �eld with NRG gave good agreement for magneti �elds h upto the order of a few TK.





Chapter 4The Anderson impurity model inmagneti �eld in non-equilibrium

If there is not omplete agreement betweenthe results of one's work and experiment,one should not allow oneself to be too dis-ouraged, beause the disrepany may wellbe due to minor features that are not prop-erly taken into aount and that will getleared up with further development of thetheory. Paul A.M. Dira

In this hapter we extend the RPT alulation for the AIM in magneti �eld to the non-equilibrium ase. We �rst disuss the relevant experimental situation and reent results ofmeasurements of the �eld dependent di�erential ondutane through a quantum dot inthe Kondo regime. We analyse how well these results an be understood with theoretialestimates based on equilibrium theory. Then we introdue the non-equilibrium theoryfor the two-hannel AIM and the orresponding RPT. We present asymptotially exatresults in the low voltage regime and �nite �eld regime, and also results for the dynamisat higher voltages. All alulations are based on the non-equilibrium RPT with �elddependent renormalised parameters.4.1 Transport through a quantum dotTunable mesosopi systems, suh as quantum dots, have a attrated muh attentionfrom experimentalists as well as theorists in reent years. One reason is that they haveproved to be extremely useful to study strong orrelation physis, suh as the Kondoe�et (Kouwenhoven and Glazman 2001). This development was stimulated by the ex-traordinary progress in fabriating, probing and experimentally handling these nanosalesystems, whih lead to many aurate measurements of the Kondo behaviour in suhstrutures (Ralph and Buhrman 1994, Cronenwett et al. 1998, Goldhaber-Gordon et al.1998b, De Franeshi et al. 2002, Kogan et al. 2004, Amasha et al. 2005). As shown byGoldhaber-Gordon et al. (1998a) the equilibrium Kondo e�et in quantum dots, suh asthe saling of the temperature dependene of the zero bias di�erential ondutane withthe Kondo temperature TK an be understood quantitatively with the theoretial methodsat hand (Hewson 1993a, Costi et al. 1994). In the last hapter we studied in detail thebehaviour of quantum dot like system in a magneti �eld. Experimentally, this behaviour



64 The Anderson impurity model in magneti �eld in non-equilibriumis investigated by measurements of the �nite bias di�erential ondutane, whih reallyrepresent a non-equilibrium situation. To understand the experimental results properly itis therefore neessary to establish a full theoretial understanding of the out of equilibriumKondo physis. We have to distinguish two types of non-equilibrium behaviour here: (a)relaxation from an out of equilibrium state, suh as studied in time-dependent redueddensity matrix NRG approah (Anders and Shiller 2005) and (b) the voltage V induedsteady state urrent transport situation. Here we will fous on the latter ase. First wewill study how well measurements on quantum dots in a magneti �eld an be desribedby equilibrium quantities as alulated in the last hapter.A general expression for the urrent through a quantum dot derived in non-equilibriumtheory (Hersh�eld et al. 1991, Meir and Wingreen 1992) reads
I =

G0

2e

∑

σ

∞
∫

−∞

dω [fL(ω) − fR(ω)]
4ΓLΓR

ΓL + ΓR
[−ImGret

dσ (ω, eVds)], (4.1)where Gret
dσ (ω, eVds) is the steady state retarded Green's funtion on the dot site, and fL(ω),

fR(ω) are Fermi distribution funtions for the eletrons in the left and right reservoirs,respetively, fα(ω) = nF(ω−µα), nF(ω) = [1+eβω]−1. Usually the hemial potentials aregiven by µL = µd + eV/2 and µR = µd − eV/2, where Vds = V is the soure drain voltageand µd is the hemial potential on the quantum dot. ΓL and ΓR desribe the ouplingto the left and right lead, respetively, and G0 = e2/π~ is the quantum ondutanelimit in mesosopi transport with Plank's onstant ~. All these quantities relate tothe formulation of the two hannel Anderson model, whih is depited in �gure 4.3. Forsymmetri oupling to the leads we have ΓL = ΓR = ∆/2.Equation (4.1) is a generalisation of the earlier expression (3.30) for the linear responsedi�erential ondutane G = dI/dV . The di�erential ondutane is the quantity whihan be aessed experimentally and therefore (4.1) provides the onnetion between thetheoretially obtained Green's funtion Gret
dσ (ω, eV ) and the measured urrent through aquantum dot.Quantum dot experiments (Kogan et al. 2004, Amasha et al. 2005) in the presene ofa magneti �eld have been performed in non-equilibrium situations with a �nite soure-drain voltage V . In the last hapter we had seen that in a magneti �eld the Kondoresonane is shifted from the position at the Fermi level. Therefore, for �eld strengthslarger than a ritial value hc two peaks an be observed in the di�erential ondutaneas a funtion of the voltage V . There have been several interpretations (Moore and Wen2000, Logan and Dikens 2001) of these results based on the approximation of using theequilibrium Green's funtion to evaluate Gret

dσ (ω, eV ) in (4.1). With this approximationat T = 0 we get an expression for the di�erential ondutane G(V ) as a funtion of thevoltage V ,
G(V ) =

dI

dV
=
G0π∆

2
ρd(eV/2). (4.2)



4.1 Transport through a quantum dot 65In this approximation G(V ) is diretly proportional to the total equilibrium spetral density
ρd = ρd,↑ + ρd,↓ evaluated at ω = eV/2, whih is shown in �gure 4.1 for the parametersused earlier (U/π∆ = 4) and a range of magneti �elds. The peak splits above a ritial�eld, hc & 0.5TK, whih in agreement with results for the Kondo model (Costi 2000). A
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Figure 4.1: Left: Total spetral density of the d-site ρd(ω) for various �elds h. One an seethat the peak splitting beomes visible only for �elds h & 0.5TK. Right: We ompare thepeak position in the di�erential ondutivity Vp, as dedued from equation (4.2) and theNRG results for ρd(ω), with Vp,exp = ∆K dedued from experiment Kogan et al. (2004).The Kondo temperature is inferred from the ritial �eld for the peak splitting to beobserved, B(exp)

c ≈ 2T and the strong oupling result hc ≈ 0.584TK, whih is derived laterin this hapter.maximum of the di�erential ondutane, ours when one of the quasipartile peaks inthe spetral density is oinident with the left Fermi level at µd + eVds/2 and at the sametime the other peak oinides with the right Fermi level, µd − eVds/2. This is illustratedshematially in �gure 4.2.It is important to be areful when quantifying the magnitude of the splitting of the Kondoresonane for �elds larger than the ritial �eld, h > hc. In the interpretation of theexperimental results of dI/dVds the splitting of the Kondo resonane ∆
(exp)
Kondo was identi�edwith the voltage splitting seen in the di�erential ondutane e(V +

ds − V −
ds ) = ∆

(exp),V
Kondo(Kogan et al. 2004, Amasha et al. 2005). We had denoted the peak position of one spinomponent of the Kondo resonane in the spetral density by εp(h) in the last hapter. Thesplitting between the up and down peaks in the total spetrum is ∆

(theo),ω
Kondo = 2εp(h)fc(h),where fc(h) is a orretion fator due to the overlap of the resonanes (Hewson et al. 2005).It is ommon to ompare the Kondo splitting with the Zeeman splitting ∆Z = 2h. It shouldbe noted that results based on equation (4.2) inlude the hange in the hemial potentialon the dot µd with the applied voltage V ,1 and the Kondo resonane, being a many-body1It is assumed that µd always is at the average position of µL and µR, whih for ΓL = ΓR is mostreasonable.



66 The Anderson impurity model in magneti �eld in non-equilibrium
µd + eVds/2

µd − eVds/2µd

(a) (b)Figure 4.2: A shemati plot of the spetrum on the dot and hemial potentials forleft/right lead (µd ± eV/2) and dot (µd) for (a) zero bias and zero magneti �eld and (b)�nite voltage and �nite �eld.
resonane is tied to this hemial potential (Hewson et al. 2005), as illustrated in �gures4.2. Therefore, as seen in equation (4.2) voltage and frequeny arguments, eV and ω,respetively, are related by a fator of two, hene ∆

(exp),V
Kondo = 2∆

(exp),ω
Kondo for Kondo splitting inthe spetral density. Therefore, if experimentally a splitting in the di�erential ondutaneis identi�ed as larger than twie the Zeeman splitting, ∆

(exp),V
Kondo > 2∆Z, based on (4.2) itimplies that the orresponding Kondo splitting in the spetral density is merely largerthan the Zeeman splitting, ∆

(exp),ω
Kondo > ∆Z, di�ering by a fator of 2 from the onlusion inreferene Kogan et al. (2004).To test whether the experimental results an be explained on the basis of equation (4.2),we have extrated the voltage peak position Vp whih orresponds to half the magnitude ofthe peak splitting for U/π∆ = 2, 4 and a range of �elds. The omparison with experimentalresults (Kogan et al. 2004) is displayed in �gure 4.1 (right). We an see there that, whilstthere is an agreement in the range h/TK ≃ 0.5− 1, in general there does not appear to bea satisfatory quantitative explanation of the experimental results based on approximatingthe non-equilibrium Green's funtion by the equilibrium one as the splitting of the Kondoresonane is overestimated like this. We onlude that an agreement of experimental andtheoretial results rests on an aurate desription of the steady state situation out ofequilibrium. In fat, one must stress that soure drain voltage sweeps for the di�erentialondutane in quantum dot systems do not give diret information about the equilibriumdensity of states as sometimes assumed. We will therefore in the remainder of this hapterextend our analysis to the non-equilibrium transport situation and start by giving theformal setup for the two hannel AIM.



4.2 Formal setup for the non-equilibrium theory 674.2 Formal setup for the non-equilibrium theory4.2.1 The two hannel Anderson model and Keldysh formalismIn this setion we onsider a transport situation through a loal interating system, like aquantum dot (QD). The Hamiltonian has the general form orresponding to the sketh in�gure 4.3,
H = HL +HTL +HD +HTR +HR. (4.3)

Hα (α = L,R) desribes the left and right lead, respetively,
Hα =

∑

k,σ

εkαc
†
k,σ,αck,σ,α = −

∑

i,j,σ

tαijc
†
i,σcj,σ. (4.4)We assume i, j < 0 for the operators in the left lead α = L and i, j > 0 for α = R.

εkα = εk + µα inludes the left and right hemial potential and gives the dispersion forthe tight-binding hain form in (4.4).PSfrag replaements
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Figure 4.3: A shemati piture of the two hannel Anderson model.
HTα is the tunnelling term between lead α and the dot. We an ollet the left and rightontribution to a mixing term of the form

Hmix = −
∑

σ

VL(c†d,σc−1,σ + h.c.) −
∑

σ

VR(c†1,σcd,σ + h.c.). (4.5)
HD desribes the isolated loal system, whih will in our ase be an interating Andersons-level impurity,

HD =
∑

σ

εd,σc
†
d,σcd,σ + Uc†d,↑cd,↑c

†
d,↓cd,↓ ≡ HD,0 +HD,U . (4.6)We have allowed for a loal magneti �eld h = gµBH/2. To onsider the transport problemwe employ the Keldysh formalism (Keldysh 1965, Rammer and Smith 1986) and follow theformulation of Caroli et al. (1971). Thus, H1 = HL+HR+HD,0 is the equilibrium startingpoint and the term H2(t) = e−δ|t|(Hmix + HD,U) is adiabatially swithed on. The mainaim is to alulate the on-site retarded non-equilibrium Green's funtion Gret

dσ (ω, eV ), whih



68 The Anderson impurity model in magneti �eld in non-equilibriumdetermines the urrent through the interating quantum dot as seen in equation (4.1). Thisan be done by a perturbation theory, whih is set up in analogy to the equilibrium ase.In order to avoid the unknown ground state at t = ∞, one has to work with additionalGreen's funtion on the Keldysh ontour CK as depited in �gure 4.4 . This is onvenientlydone by introduing 2 × 2 matries in Keldysh spae (Keldysh 1965, Rammer and Smith1986, Zagoskin 1998, Oguri 2006).PSfrag replaements
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CKFigure 4.4: Keldysh ContourThe non-interating two-hannel problem an be dealt with expliitly. We assume wideondution bands and the mixing of quantum dot with the leads is desribed by the hy-bridisation onstants Γα(ω) = −V 2
α Imgret

α (ω) ≡ Γα (Oguri 2006). Here, the retarded leftand right lead Green's funtions are gret
−1−1(ω) = gret

L (ω) and gret
11 (ω) = gret

R (ω). One �ndsthe loal unperturbed Green's funtion
G

(0)
d,σ(ω) =

(

G
(0),−−
d,σ (ω) G

(0),−+
d,σ (ω)

G
(0),+−
d,σ (ω) G

(0),++
d,σ (ω)

)

, (4.7)where the −/+ index orresponds to the �rst/seond part of the Keldysh ontour CK,respetively. The matrix elements, whih inlude the voltage dependene expliitly, aregiven by
G

(0),−−
d,σ (ω) =

ω − εd,σ − i∆(1 − 2feff(ω))

(ω − εd,σ)2 + ∆2
, (4.8)

G
(0),−+
d,σ (ω) =

2i∆feff(ω)

(ω − εd,σ)2 + ∆2
, (4.9)

G
(0),+−
d,σ (ω) =

−2i∆(1 − feff(ω))

(ω − εd,σ)2 + ∆2
, (4.10)and G

(0),++
d,σ (ω) = −G(0),−−

d,σ (ω)∗. We have de�ned ∆ = ΓL + ΓR and introdued thefuntion
feff(ω) =

ΓLfL(ω) + ΓRfR(ω)

ΓL + ΓR
. (4.11)We will assume in the following µd = 0 suh that µL = eV/2 and µR = −eV/2. Theemphasis for the alulation in this hapter is laid on zero temperature, suh that nF(ω) =

1 − θ(ω).In the interating theory the full Green's funtion is given by the Dyson matrix equation
Gd,σ(ω)−1 = G

(0)
d,σ(ω)−1 − Σd,σ(ω). (4.12)The omponents of this self-energy Σd,σ(ω) an be determined in perturbation theory,whih is onveniently desribed in the path integral formalism (Oguri 2005, 2006). Thus



4.2 Formal setup for the non-equilibrium theory 69the Anderson model for transport through a quantum dot in the Keldysh formalism isharaterised by the e�etive ation S = S0 + SU with
S0 =

∑

σ

∞
∫

−∞

dt

∞
∫

−∞

dt′ dσ(t)G
(0)
d,σ(t− t′)−1dσ(t′) (4.13)where dσ(t) := t(dσ,−(t), dσ,+(t)) and

G
(0)
d,σ(t− t′)−1 =

1

2π

∫

dω G
(0)
d,σ(ω)−1e−iω(t−t′).

G
(0)
d,σ(ω) is given in (4.7). The interation term reads

SU = −U
∞
∫

−∞

dt (nd,↑,−(t)nd,↓,−(t) − nd,↑,+(t)nd,↓,+(t)). (4.14)The partition funtion of the model is given by
Z =

∫

D(dσ,dσ)eiS[dσ,dσ ]. (4.15)Comparing this with the results in setion 2.2.1, we an see that the theory has the samestruture as in equilibrium with the only di�erene that we have to take into aount theadditional degrees of freedom in matrix form.Non-equilibrium renormalised perturbation theoryWe also have to generalise the setup of the renormalised perturbation theory from hapter2 to the non-equilibrium ase. The details for this are given in appendix C.4. The renor-malised parameters are de�ned for zero temperature and in the equilibrium limit, eV → 0,and we an therefore for their de�nition fous on the equilibrium retarded self-energy
Σret

σ (ω). In the Keldysh formalism it is generally given by
Σret

σ (ω) = Σ−−
σ (ω) + Σ−+

σ (ω). (4.16)As seen in hapters 2 and 3 for the equilibrium RPT it is useful to inlude the magneti�eld dependene in the self-energy, and then the de�nition of the parameters essentiallyoinide with (2.33) and (2.34) with Σσ(ω) → Σret
σ (ω) . The renormalised interation Ũ(h)is de�ned as before by the e�etive quasipartile interation of the problem, whih is givenby the full renormalised four point vertex funtion at zero frequeny (2.37). Note that therenormalisation onditions (2.40) and (2.41) only have to be satis�ed in the equilibriumlimit. The matrix for the non-interating Green's funtion in terms of the renormalisedparameters is

G̃
(0)
d,σ(ω) =

(

G̃
(0),−−
d,σ (ω) G̃

(0),−+
d,σ (ω)

G̃
(0),+−
d,σ (ω) G̃

(0),++
d,σ (ω)

)

, (4.17)



70 The Anderson impurity model in magneti �eld in non-equilibriumwhere the matrix elements are given by [f. (4.8)-(4.10)℄
G̃

(0),−−
d,σ (ω) =

ω − ε̃d,σ − i∆̃σ(1 − 2feff(ω))

(ω − ε̃d,σ)2 + ∆̃2
σ

, (4.18)
G

(0),−+
d,σ (ω) =

2i∆̃σfeff(ω)

(ω − ε̃d,σ)2 + ∆̃2
σ

, (4.19)
G

(0),+−
d,σ (ω) =

−2i∆̃σ(1 − feff(ω))

(ω − ε̃d,σ)2 + ∆̃2
σ

, (4.20)and G̃(0),++
d,σ (ω) = −G̃(0),−−

d,σ (ω)∗. The renormalised perturbation theory an be set up inthe one-partile irreduible sheme as desribed in setion 2.2.2 and we only have to respetthe matrix struture (see appendix C.4). We will be mainly interested in alulating theretarded renormalised self-energy (4.16). Therefore, we an fous on the ombinations
λret

i ≡ λ−−
i + λ−+

i for the ounter-terms, and in the simplest ase determine the valuediretly by the renormalisation ondition (2.40), suh that
λret

1 = Σr,−−
σ (0) + Σr,−+

σ (0) (4.21)and
λret

2 =
∂

∂ω
(Σr,−−

σ (ω) + Σr,−+
σ (ω))

∣

∣

ω=0
. (4.22)

Σr,αβ
σ is the self-energy alulated perturbatively, and in the above equations we take thelimit eV → 0. The voltage dependent renormalised retarded self-energy is then given by

Σ̃ret
σ (ω, eV ) = Σr,−−

σ (ω, eV ) + Σr,−+
σ (ω, eV ) − λret

2 ω − λret
1 . (4.23)We will give an example for the diagrammati expansion for the seond order diagrams for

T = 0. The diagrams are of the same form as the one skethed in �gure 2.4 (right), however,the verties an enter with di�erent sign ± depending on whih part of the ontour theyorresponds to. The onvention here for the Feynman rules is a �+�-sign for the vertex onthe lower ontour (−) and a �−�-sign for the vertex on the upper ontour (+). The earlierintrodued pair propagator (2.61) beomes a matrix in Keldysh spae Π
hσ
p−σ,

Π
hσ
p−σ =

(

Π
hσ,(−−)
p−σ Π

hσ,(−+)
p−σ

Π
hσ,(+−)
p−σ Π

hσ,(++)
p−σ

)

, (4.24)whose matrix elements are given by
Π

hσ,(−−)
p−σ (ω) = i

∫

dω1

2π
G̃

(0),−−
d,σ (ω + ω1)G̃

(0),−−
d,−σ (ω1), (4.25)

Π
hσ,(−+)
p−σ (ω) = i

∫

dω1

2π
G̃

(0),−+
d,σ (ω + ω1)G̃

(0),+−
d,−σ (ω1), (4.26)

Π
hσ,(+−)
p−σ (ω) = i

∫

dω1

2π
G̃

(0),+−
d,σ (ω + ω1)G̃

(0),−+
d,−σ (ω1) (4.27)



4.2 Formal setup for the non-equilibrium theory 71and Π
hσ,(++)
p−σ (ω) = −[Π

hσ,(−−)
p−σ (ω)]∗. All four pair propagators an be alulated analyt-ially for �nite voltage and magneti �eld. The resulting expressions are, however, longand not very instrutive. The negative spin expressions for the Green's funtions yield

Πh−σ,(−−)
pσ (ω, h) = Π

hσ,(−−)
p−σ (−ω, h) (4.28)and Π

h−σ,(−+)
pσ (ω, h) = Π

hσ,(+−)
p−σ (−ω, h). The matrix elements of the seond order self-energy read (α, β = ±)

Σr(2)αβ
σ (ω) = −(αβ)

Ũ2

2πi

∫

dω2 Π
hσ,(αβ)
p−σ (ω − ω2)G̃

(0)αβ
d,−σ (ω2). (4.29)For the symmetri AIM and symmetri oupling to the dot ΓL = ΓR = ∆/2 , and we have

feff(ω) = [f(ω− eV/2) + f(ω+ eV/2)]/2, whih is symmetri for V → −V . Sine the onlydependene in the free Green's funtions omes from this fator, the self-energies satisfy
Σr(2)αβ

σ (ω,−eV ) = Σr(2)αβ
σ (ω, eV ). (4.30)By examining the spei� expressions for the Green's funtion (4.18)-(4.20) we also �ndfor the retarded renormalised self-energy (4.16) in the seond order expansion that

Σ̃
(2)ret
−σ (ω) = −Σ̃(2)ret

σ (−ω)∗. (4.31)Hene, to seond order it is enough to alulate, say, the spin up retarded Green's funtionand the other one an be inferred from (4.31).4.2.2 Low voltage asymptotis for the self-energyAsymptotially exat results for the small voltage dependene of the self-energy have beenderived by Oguri (2001, 2005). His arguments are based on Ward identities and relate thederivative of the self-energy to the equilibrium vertex funtion. The onsiderations anbe viewed as an extension of the exat results by Yamada (1975b) for the ω dependene.These exat results are reprodued by a seond order renormalised perturbation expansionin Ũ in the Keldysh formalism (Oguri 2005) whih yields
Σ̃(ω, Vds) = −ic

[

ω2 +
3

4
(eVds)

2

]

, with c =
1

2∆̃

(

Ũ

π∆̃

)2

. (4.32)When a magneti �eld is inluded this result an be generalised in the renormalised per-turbation theory framework (Hewson et al. 2005). Starting point is equation (4.29) for theseond order self-energy diagram. The retarded self-energy is given by the ombination inequation (4.16). Σ−+ is purely imaginary, and therefore for the real part ontribution weonly have to onsider Σ−− as given in (4.29). For T = 0 we an expand
feff =

1

2
(fL(ω) + fR(ω)) = 1 − θ(ω) − (eV )2

8
δ′(ω). (4.33)



72 The Anderson impurity model in magneti �eld in non-equilibriumThe Green's funtion G̃(0),−−
d,σ an thus be expressed as

G
(0),−−
d,σ (ω) =

ω − ε̃d,σ − i∆̃(2θ(ω) − 1)

(ω − ε̃d,σ)2 + ∆̃2
− i∆̃δ′(ω)(eV )2/4

(ω − ε̃d,σ)2 + ∆̃2
, (4.34)where the �rst term is idential to the equilibrium T = 0 ausal Green's funtion. Thismeans that the (eV )2-term is found by three terms where in eah of them one Green'sfuntion is replaed by the seond term in (4.34) and the other two are equilibrium Green'sfuntions. Comparing this with equation (3.23) we see that this expansion is apart fromthe prefator ompletely analogous to the low order temperature expansion in the lasthapter. We �nd that the renormalised self-energy for �nite �eld h to order ω2 and V 2

dsan be expressed in the form,
Σ̃σ(ω, Vds) = −c(h)

[

i

(

ω2 + 3

(

eVds

2

)2
)

+
ε̃d,σ(h)

∆̃(h)

(

αω(h)ω2 + αV (h)

(

eVds

2

)2
)]

,(4.35)where
c(h) =

πŨ2(h)[ρ̃0
d(0, h)]

3

2
. (4.36)The quasipartile density of states ρ̃0

d,σ(ω, h) is given in equation (3.3). The oe�ient
αω(h) for the expansion of the real part of Σ̃σ(ω, Vds) is given as in equation (3.21). Theresult for α̃V (h) is
αV (h) = 3 +

∆̃(h)

2ρ̃0
d(0, h)πε̃d,σ(h)2

[

1 − ε̃d,σ(h)

∆̃(h)
tan−1

(

ε̃d,σ(h)

∆̃(h)

)

(

4 +
∆̃(h)

ρ̃0
d(0, h)πε̃d,σ(h)2

)

]

.(4.37)In the limit h → 0 equation (4.35) redues to (4.32). For a ertain magneti �eld hthe oe�ient αV (h) hanges sign and thus the asymptotis of the real part of the voltagedependene. In a generi strong oupling situation U/π∆ = 4 this happens for hc ≃ 0.46TK.Also in the large voltage limit asymptoti exat results an be derived (Oguri 2002).4.3 Di�erential ondutane for low voltageIn this setion we will employ the asymptotially exat results for small voltage to study thebehaviour of the di�erential ondutane. Starting from (4.1), for partile hole symmetrywe an express the di�erential ondutane for zero temperature as
dI

dV
=
G0∆

2

∑

σ

(

− ImGret
dσ (eV/2, eV )

)

+
G0∆

e

∑

σ

eV/2
∫

0

dω

[

−Im
∂Gret

d,σ(ω, eV )

∂eV

]

. (4.38)If the voltage dependene of Gret
dσ (ω, eV ) was not important, the di�erential ondutanewould be given diretly by the �rst term in (4.38) without the voltage dependene in



4.3 Di�erential ondutane for low voltage 73the seond argument. This was disussed in equation (4.2), and as a onsequene thedi�erential ondutane is identi�ed with the spetral density on the quantum dot. Ingeneral, the voltage dependene an not be negleted, and for the orret non-equilibriumdesription for the di�erential ondution in equation (4.38), we need to alulate thevoltage dependene of the loal Green's funtion, whih is inorporated in the renormalisedself-energy as shown in the last setion.4.3.1 E�et of the voltage on the di�erential ondutane for small �eldIn this setion we fous on the situation with a small magneti �eld. Then we an usethe asymptoti result for the renormalised self-energy (4.35) to alulate the di�erentialondutane in equation (4.38). To larify the e�et of the �nite voltage we onsiderdi�erent approximations. The simplest situation is to ignore the renormalised self-energyterm ompletely, but use the renormalised parameters. The di�erential ondutane at
T = 0 then takes the simple form,

dI

dV
=
G0

2

∑

σ

∆̃2

(eV/2 − ε̃d,σ)2 + ∆̃2
. (4.39)We refer to this as (a) in the following. As (b) we refer to the ase where the ω2 term inthe renormalised self-energy in (4.35) is inluded for the alulation of dI/dV . For small

ω this orresponds to (4.2), where the equilibrium spetral density is used, and no non-equilibrium voltage dependene is inluded. By () we denote the full �rst term in equation(4.38) with the voltage dependene in the seond argument of the Green's funtion whihomes from the self-energy in (4.35), but negleting the seond term in (4.38). (d) takesinto aount the full expression (4.38) with the self-energy asymptotis (4.35).We would like to analyse these expressions for a small magneti �eld. If we plot boththe ontributions (σ = 1 and σ = −1) to dI/dVds in the very weak �eld regime then, dueto overlap, no magneti �eld splitting an be observed. We an alulate, however, theshifts in the omponent resonane for σ = ν = ±1. In �gure 4.5 we plot the terms in thedi�erential ondutane (in units of G0) given by equation (4.38) as a funtion of eV/∆̃,where we use σ =↑ in (4.38).We take values orresponding to the Kondo regime, with R = η̃ = 2 (ε̃d,σ(h) = ση̃h), and asmall �eld h/∆̃ = 0.05 (π∆̃ = 4TK). As explained above we have distinguished the di�erentontributions from (a) the ase for the non-interating quasipartiles as in equation (4.39)to (d) whih takes into aount the full expression (4.38) with the self-energy asymptotis(4.35). As di�erent ontributions in (4.38) are inluded going from (a) to () we see thatthe peak position and width is redued. We also see that the integral term arising from thevoltage dependene of Gret
d,σ(ω, eV ) auses a signi�ant further redution (d) of the magnetishift beyond that estimated from the �rst term () in equation (4.38), suh that it annotbe negleted. In an experimental ondutane measurement, the omponent ondutanefor small �eld is not observable, however, due to the overlap of the two omponents. The
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~Figure 4.5: Left: The shift of the omponent resonane (ν = σ = 1) in the di�erentialondutane (in units of G0) in a magneti �eld for h/∆̃ = 0.05 as a funtion of the biasvoltage eVds/∆̃, aording to the inlusion of di�erent ontributions as desribed in thetext. The arrows indiate the respetive maxima. Right: The total di�erential ondutane(in units of e2/h) in the Kondo regime for larger magneti �eld values, alulated usingequation (4.38) taking into aount the full self-energy expansion from (4.35). Theseresults are asymptotially exat for eVds/∆̃ ≪ 1 and approximate, based on a seondorder expansion in eVds for larger values.results for the di�erent ases in �gure 4.5 leave no doubt that the �nite voltage has animportant e�et on the peak form and position of the Kondo resonane in a magneti �eld- at least for small �elds. We expet that at larger �elds h ∼ TK the e�et will also not benegligible.4.3.2 Critial �eld for peak splittingThe arguments for the voltage dependene in this setion are restrited to the regimewhere eV is small ompared to ∆̃. These results are, however, su�ient for us to deduethe ritial value of the magneti �eld hc at whih two distint peaks begin to appear inthe total di�erential response. For values of h < hc the di�erential ondutane will havea maximum at eV = 0, and for h > hc this will beome a minimum. Thus, we an writethe di�erential ondutane as
dI

dV
= G(0)(h) +G2(h) (eV )2 + O((eV )4) (4.40)and from the oe�ient G2(h) we an determine the point at whih the sign hange oursas a funtion of h, and hene we an determine hc. In the �rst term in (4.38) we have toexpand the denominator up to seond order in (eV ). The ontribution to the real part of theself-energy to order ω2 and (eV )2 is proportional to ση̃(h)h. It might be thought that suha term should anel out in taking the sum over the two spin omponents. However, thereis a σ-independent ontribution from a ross term with the e�etive Zeeman term σhη(h),



4.3 Di�erential ondutane for low voltage 75whih has to be inluded. The ontribution from the seond integral term in equation(4.38) to order (eV )2 an be easily be evaluated, as it is su�ient to put ω = eV = 0 inthe integrand after the di�erentiation. As a �rst estimate using the above results the valueof hc an be alulated analytially by dropping the h dependene of the parameters andwithout the real part ontribution to the self-energy expansion. The result, G2(hc) = 0,an be expressed entirely in terms of ∆̃ and the Wilson ratio R = η̃(0) = 1 + Ũ/π∆̃,
h2

c

∆̃2
=

√

9 + 20(R − 1)2(1 + 5(R − 1)2) − 3

10R2(R− 1)2
. (4.41)In the non-interating ase, R = 1 and hc/∆ = 1/

√
3 = 0.577 and in the Kondo regime,

R = 2, ∆̃ = 4TK/π, and hc/TK = 0.582, with TK given by (1.10). If the voltage dependeneof the Green's funtion is negleted the result in the Kondo regime is hc/TK = 0.491,signi�antly smaller than if this term is inluded. This is in line with the observationin �gure 4.5 that the peak position is redued to smaller voltages when non-equilibriume�ets are inluded.The estimated ritial magneti �eld is omparable with ∆̃, and for U 6= 0 it may notbe su�ient to work to linear order in h. It is possible to work with an arbitrary magneti�eld, but in this ase we have to use the �eld dependent renormalised parameters and thefull expansion of the self-energy to order ω2 and (eV )2 as given in (4.35). The equationfor the ritial �eld hc beomes
h2

∆̃2(h)
=

√

(3 − α(h)γ(h))2 + 4γ(h)(5 − α(h))(1 + 5γ(h)) − 3 + α(h)γ(h)

2γ(h)(5 − α(h))η̃(h)2
, (4.42)where α(h) = αω(h) + αV (h), and

γ(h) = π∆̃(h)Ũ2(h)[ρ̃0
d(0, h)]

3 = π∆̃(h)ρ̃0
d(0, h)(R(h) − 1)2. (4.43)Equation (4.42) is an impliit equation for hc whih an be solved by iteration startingfrom the muh simpler result (4.41), obtained within the linear approximation. Of ourse,(4.42) redues to (4.41) if we drop the �eld dependene of the parameters and take α = 0.For a strong oupling situation (U/π∆ = 4) the result for the ritial �eld obtainedby iterating equation (4.42) and using the h-dependent renormalised parameters is hc ≃

0.459∆̃ = 0.584TK. This di�ers only by 0.3% from the value obtained from (4.41). Thesmall di�erene is due to the fat that the various orretion terms due to the h dependeneof the parameters in the more general formula (4.42) tend to anel giving only a smallresultant hange.Plots of the total di�erential ondutane for various �elds above and below the ritial�eld are displayed in �gure 4.5 (right). We have taken the full self-energy expansion as givenin (4.35) into aount, inluding the �eld dependene of the renormalised parameters. Theresults are asymptotially exat only for small eV and a more omplete theory is requiredto alulate the magnitude of the splitting at larger bias voltages. The major problem to



76 The Anderson impurity model in magneti �eld in non-equilibriumbe solved is the dependene of the self-energy on the voltage bias term, when eV is of theorder of the Kondo temperature TK, so that a detailed omparison with experiment anbe made with the experimental results in this regime. In the next setion we present RPTalulations for larger values of eV .4.4 Higher voltages and non-equilibrium RPT alulationsIn the last hapter in setion 3.4.2 we have seen that in the equilibrium AIM with magneti�eld the spetral density ould be desribed well in the RPT framework, up to energiesand �elds of the order of the Kondo temperature TK. We saw that it was not enough toonsider the seond order diagram, but a lass of repeated partile hole sattering diagramshad to be taken into aount. In this setion we present results for the extension of thesealulations to the non-equilibrium. In order to alulate a good approximation for therenormalised self-energy we adopt a similar strategy as the one, whih has proven to besuessful in the equilibrium ase. Therefore, the self-energy will be alulated by takinginto aount repeated quasipartile sattering. Before we onsider these alulations forthe one-partile spetral funtion we look at the transverse spin suseptibility, in order toget a �rst impression what the e�et of the non-equilibrium situation and �nite voltage onthe dynami response funtions is.4.4.1 Non-equilibrium repeated quasipartile satteringWhen we sum up the repeated sattering series for the transverse spin suseptibility wehave to be areful that the signs at the vertex are taken into aount orretly (onvention�−�-sign for +-vertex). Hene, in addition to the matrix for the pair propagator Π
hσ
p−σ(4.24) we de�ne

Π̂
hσ
p−σ =

(

Π
hσ,(−−)
p−σ Π

hσ,(−+)
p−σ

−Π
hσ,(+−)
p−σ −Π

hσ,(++)
p−σ

)

. (4.44)Then the series orresponding to the diagrams in �gure 2.7 for the matrix for the transversespin suseptibility χt takes the form
χt = Π

hσ
p−σ

∞
∑

k=0

[Ũhσ
p−σΠ̂

hσ
p−σ]k = Π

hσ
p−σ[1− Ũhσ

p−σΠ̂
hσ
p−σ]−1. (4.45)The renormalised vertex Ũhσ

p−σ is given as in the equilibrium theory in equation (3.38).The expliit result for χt(ω, eV ) is obtained by matrix inversion, where the determinant isgiven by
D = (1 − ŨΠ(−−))(1 + ŨΠ(++)) + Ũ2Π(−+)Π(+−). (4.46)We have dropped the redundant ph, σ indies in the last equations. Similar series expres-sions an be derived for other RPA like series in the Keldysh formalism.



4.4 Higher voltages and non-equilibrium RPT alulations 77We onsider the retarded, dynami, transverse spin suseptibility and think of thevoltage like an external �eld,
χt(ω, eV ) = χ

(−−)
t (ω, eV ) − χ

(−+)
t (ω, eV ). (4.47)This result is similar to the earlier one in equation (3.36), whih is valid in equilibriumase and �nite magneti �eld. In �gure 3.5 we found exellent agreement of the ph-RPTresults with the NRG results for χt(ω, eV = 0) and arbitrary �eld; h = 0 and h = TK wasshown there. Here we study the e�et of the �nite voltage and plot Imχt(ω, eV ) for h = 0(left) and h = TK (right) and various values of the voltage in �gure 4.6.
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Figure 4.6: The imaginary part of the retarded, dynami, transverse spin suseptibility
χt(ω, eV ) for h = 0 (left) and h = TK (right) and various values of the voltage.The results for h = 0 and h = TK and zero voltage are idential with the ones of �gure3.5. In the ase of �nite voltage of the order of the Kondo temperature we �nd that thepeaks in the suseptibility are suppressed, both in the zero and �nite �eld ase. The e�etis visible more strongly for smaller magneti �elds. Generally, the results seem to give asound representation for the system in �nite voltage, and although we have no results froman alternative alulation to ompare to, the behaviour seems on general grounds to givea reasonable approximation for the quantity.Having derived expressions for the suseptibility we an now onsider the matrix el-ements of the to the repeated sattering orresponding self-energy Σ

ph, whih have thesame struture as for the seond order diagram (4.29),
Σr,ph,αβ

σ (ω) =
Ũ2

1

2πi

∫

dω2χ
(αβ)
t (ω − ω2)G̃

(0),αβ
d,−σ (ω2). (4.48)

χ
(αβ)
t (ω) was given in equation (4.45), and we only have to replae Ũhσ

p−σ by Ũ1. Thise�etive interation Ũ1 is found in the equilibrium limit and given as in (3.45). The



78 The Anderson impurity model in magneti �eld in non-equilibriumretarded self-energy is given by the ombination in equation (4.16). With the identity
2ImΣ−−

σ (ω) = −ImΣ−+
σ (ω) − ImΣ+−

σ (ω) (4.49)and relations for the suseptibility, we obtain as in (4.31),
Σ̃ph
−σ(ω) = −Σ̃ph

σ (−ω)∗. (4.50)Therefore also here the negative spin part an be obtain from the positive one (partilehole symmetri ase). This implies for the imaginary part of the retarded Green's funtion
ImGret

d,−σ(ω, eV ) = ImGret
d,σ(−ω, eV ). (4.51)The appropriate renormalised retarded self-energy Σ̃ph,ret

σ (ω) is obtained in the equilibriumlimit by inluding the ounter-terms as in equation (4.23).4.4.2 Single partile dynamis in zero magneti �eldBefore onsidering the �eld and voltage dependent ase, we investigate purely the e�etof the �nite voltage on the Kondo resonane with the seond order RPT approximation.Namely, we �rst study the splitting of the Kondo resonane with �nite voltage in the RPTframe work in zero magneti �eld. From the asymptoti behaviour to order (eV )2 and ω2in equation (4.35) we immediately see that no splitting an our due to the absene of amixed term. Rather than arrying out higher order asymptoti expansions, we analyse thesituation by numerially evaluating the seond order diagrams (4.29). In �gure 4.7 (left)we display the ω-dependene of the imaginary part of the renormalised self-energy for anumber of voltages and a generi strong oupling situation (U/π∆ = 4).
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4.4 Higher voltages and non-equilibrium RPT alulations 79We an see that for �nite voltage the imaginary part at ω = 0 beomes �nite, some-thing visible from the asymptoti expansion (4.35). For inreasing voltages the value
|ImΣ̃

(2)ret
σ (0, eV )| goes over from a minimum to a maximum in the ω-dependene. Thee�et of this behaviour of the renormalised self-energy on the spetral density in �nitevoltage is shown in �gure 4.7 (right). We �nd that for inreasing voltage the peak heightof the Kondo resonane is redued from its equilibrium value For values of eV between

2 − 4TK the urvature at zero frequeny hanges sign and the peak is seen to split in the�nite voltage. The numerial analysis shows a splitting to our at eVsp ≃ 3.3TK. We ansee that the broadened peaks are a bit less than the voltage di�erene apart. Thereforeone is tempted to onnet the physial origin of the peak splitting with the two hemialpotentials and the tendeny of the Kondo resonane to be pinned to a Fermi level.To our knowledge up to now no preise predition about the splitting of the Kondoresonane in �nite voltage has been made. Fuji and Ueda (2003, 2005) �nd a splitting ina 4th order perturbation expansion in the bare U , but their values for eV are rather large,and it is not easy to ompare to their results. Experimentally, it is di�ult to aess thevoltage dependene of the spetral density diretly. De Franeshi et al. (2002) laim tohave observed suh a splitting in a three terminal experimental setup at voltages of theorder of the Kondo temperature. Thus the results are in qualitative agreement. If thisexperimental setup atually orresponds to the two hannel Anderson model is, however,not ompletely lear.In onlusion, we �nd in the non-equilibrium RPT sheme for strong oupling a split-ting of the Kondo resonane when the voltage exeeds a ritial eVsp of the order of theKondo temperature. We know that the theory presented is asymptotially orret for smallvoltage. If it is, however, quantitatively orret for voltages of the order of TK is not lear.It would be interesting to ompare this quantitative predition with other non-equilibriummethods.The quantity whih is diretly measured in most experiments is not the spetral density,but the di�erential ondutane dI/dV , (4.38). In �gure 4.8 we show the voltage depen-dene of dI/dV alulated from the seond order RPT (left) and the repeated satteringseries (right) for zero magneti �eld.We have inluded di�erent ontributions for omparison: the term with no non-equilibriumvoltage dependene (�No V-dep.�) orresponds to the evaluation based on the equilibriumdensity of states as desribed in equation (4.2). The label �First term� refers to only the�rst term in equation (4.38) inluding the voltage dependene of the renormalised self-energy, whilst the thik lines (�Full expr.�) are alulated with the full expression (4.38).We an observe that in ontrast to the spetral density no peak splitting an be observedin the plots for the di�erential ondutane. This is in line with all experimental results forthis quantity. We an also see that the width of the peak is redued, when the �nite voltageis taken into aount. This an be traed bak to the inreasing self-energy ontributionsfor �nite voltage. It suggests that an experimental estimate of the Kondo temperature
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Figure 4.8: Di�erent ontributions to the di�erential ondutane (in units of G0) for theseond order alulation based on (4.29) (left) and the repeated sattering diagrams, (4.48),(right). The meaning of the di�erent ontributions is explained in the text.from the peak width in dI/dV is likely to give a too small value. In both approximations(SO and ph-RPT) we see that for voltages of the order of TK a shoulder develops in thevoltage dependent alulations, and this is seen more pronouned in the results for the fullexpression (4.2). This behaviour an be explained from the fat that the approximationsfor the renormalised self-energies beome inaurate for these energy and voltage sales.4.4.3 Dynamis and di�erential ondutane in �nite magneti �eldIn this subsetion we present results for the extension of the equilibrium RPT alulationsin setion 3.4.2. There we had seen that in a �nite magneti �eld the repeated satteringresults for the renormalised self-energy gave a orretion to the free quasipartiles spetrasuh that the resulting low energy spetra agreed well with NRG results. We had alsoseen at the beginning of this hapter [f. �g. 4.1℄ that the results for the di�erentialondutane based on equilibrium spetra gave a larger estimate of the Kondo splittingin magneti �eld as ompared with experimental results. Further we found in setion 4.3that the inlusion of non-equilibrium e�ets resulted in a redution of the peak positionin small magneti �eld. It is therefore reasonable to test whether the extension of theRPT alulation to the non-equilibrium ase at higher magneti �elds gives results forthe di�erential ondutane whih ompare well with experimental ones. In �gure 4.9 weshow the di�erential ondutane with the di�erent ontributions, as explained earlier, fora �nite �eld ase, h = TK.We an see that the peak in dI/dV is split sine the �eld exeeds the ritial value hc. Thevalue of dI/dV at eV = 0 is redued substantially as ompared to the zero �eld ase. Byomparing the dashed line with the full line we an also observe that the magnitude of thepeak splitting ∆
(theo),V
Kondo in the voltage dependent expressions is redued substantially when
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Figure 4.9: Left: Di�erent ontributions to the di�erential ondutane (in units of G0)for the the repeated sattering diagrams for h = TK. Right: Comparison of the imaginarypart of the renormalised self-energy as a funtion of voltage illustrating the non-equilibriume�ets for h = TK.ompared with the result (4.2) orresponding to the equilibrium approximation (�No V-dep.�) for the di�erential ondutane. Suh an e�et had been observed for one omponentof dI/dV in the asymptoti expansion in �gure 4.5 for a smaller �eld. To illustrate thee�et of the voltage dependene in the renormalised self-energy here we have inludeda plot on the left of �gure 4.9, where the imaginary part of Σ̃ph,ret
σ (ω, eV ) is shown asdependent on the voltage like Σ̃ph,ret

σ (ω = eV/2, eV ), whih orresponds to the �rst termin (4.38) and without the voltage dependene in the seond argument, Σ̃ph,ret
σ (ω = eV/2, 0).It is visible that the imaginary part of the |Σ̃ph,ret

σ (ω = eV/2, eV )| is larger, when the fullvoltage dependene is inluded and thus the e�et on the Kondo peak in the di�erentialondutane an be understood. The loser inspetion reveals that the redution in themagnitude of the Kondo splitting in the non-equilibrium theory through the e�et of �nitevoltage is substantial, as seen for example in �gure 4.9 but also for other values of the �eld
h. In fat the resulting values for ∆

(theo),V
Kondo give a Kondo splitting whih is substantiallysmaller than the experimental result ∆

(exp),V
Kondo in �gure 4.1 (right). In other words thenon-equilibrium e�ets in the RPT alulation presented redue the splitting too muhfrom the equilibrium approximation as to give an agreement with the experimental values.At the time of writing it is not fully resolved why the ph-RPT approximation works wellin the equilibrium in �elds up to about 4TK (ompared with NRG results), but does notexplain the quantum dot measurements in �nite voltage of the same order of magnitude.Generally, the non-equilibrium problem in �nite �eld is learly a di�ult one sine the non-equilibrium spetral funtion for �elds h, frequenies ω and voltages eV , all of the orderof the Kondo temperature TK, have to be determined. Future researh on non-equilibriumKondo physis will show if an agreement between experimental and theoretial results



82 The Anderson impurity model in magneti �eld in non-equilibriumfor the di�erential ondutane an be found, based on the equation (4.38), or if othere�ets have to be onsidered. Promising approahes inlude non-equilibrium Bethe ansatzalulations (Mehta and Andrei 2006) and reformulation of the non-equilibrium problemin terms of sattering states (Oguri 2007).In summary, we have analysed the transport through a quantum dot in magneti �eldin this hapter. The desription is based on the two-hannel AIM and a renormalisedperturbation theory in the Keldysh formalism. We derived an asymptotially exat ex-pression for the low voltage behaviour of the renormalised self-energy and used it to studythe non-equilibrium e�ets on the di�erential ondutane for a small magneti �eld. Wealso presented results for dynami suseptibilities, spetral densities and the di�erentialondutane for higher voltages and �elds (order of TK). These were based on seondorder and repeated sattering RPT. We established that the �nite voltage plays an impor-tant role in the problem, and attempted to give a quantitative interpretation of the Kondosplitting observed experimentally in ondutane measurements. Based on our alulation,however, no quantitative agreement was found, and it remains to be seen in future researh,whether there are �aws in the alulation presented or additional features whih have notbeen taken into aount in the present approah play a role.



Chapter 5Loally orrelated eletrons in asuperonduting bath

The most important thing is to �nd outwhat is the most important thing.Shunryu Suzuki

The subjet of this hapter is the AIM with a superonduting bath. We start by outliningthe NRG approah for this model, and introdue the basi features appearing, suh as thesinglet-doublet ground state transition and the bound states in the gaps. Then we presentNRG results for the position and weight of the bound states, and also for the anomalousexpetation values fousing on the symmetri model �rst. This is followed by a disussionof the spetral funtions on all energy sales for di�erent parameters. The last setion isdevoted to the situation away from partile hole symmetry, where we give a global phasediagram for parameter regimes with singlet and doublet ground states.5.1 Kondo physis and BCS superondutorsSo far in this part of the thesis we have studied the Anderson impurity model in a metallimedium, fousing on the e�et of a loal symmetry breaking in the spin hannel induedby a magneti �eld. In this setion we will investigate a situation where a symmetrybreaking in the bath rather than on the impurity site is inluded. Spei�ally, we will lookat a symmetry breaking in the harge hannel and study the ase where the bath is in aBCS superonduting state. This situation is of interest for understanding the e�et ofmagneti impurities in superondutors and reent experiments with quantum dots withsuperonduting leads. Due to the proximity e�et there is indued symmetry breaking onthe impurity site. As a onsequene loalised exited state (LES) with an energy within thesuperonduting gap an be indued at the impurity site. Suh states are well known fromsuperondutor-normal-superondutor (SNS) juntions and are usually alled Andreevbound states. For a weak on-site interation the ground state of the system is usually asuperonduting singlet (S = 0) and the LES is an S = 1/2 exitation. If there is a strongrepulsion on the impurity site, suh that single oupation is favoured, we have a situation



84 Loally orrelated eletrons in a superonduting bathwhere a single spin is oupled to the superonduting medium. Similar to the ase with anormal, metalli bath the Kondo e�et plays a role here. The ground state an be a singlet,more spei�ally a Kondo singlet, when both the loal interation and the superondutinggap are not too large. Physially, one an think of a situation where enough ontinuumstates are available to sreen the impurity spin. If the loal interation is, however, in-reased beyond a ritial value Uc the ground state beomes a doublet (S = 1/2) with anunsreened spin at the impurity site. In this situation the LES is an S = 0 exitation. Thisground state transition at zero temperature is an example of a quantum phase transitionwhih ours for a level rossing that depends on a system parameter (Sahdev 1999). Therelevant energy sales for this singlet-doublet transition to our in the Kondo regime arethe Kondo temperature TK and the superonduting gap ∆sc. In early work by Matsuura(1979) the e�ets of impurities on superondutors in an interpolation theory were studied.For a single impurity it was found that the singlet-doublet transition ours at 4TK ≃ π∆sc(π/4 ≃ 0.78). There have also been NRG studies for a spin oupled to a superondutingbath (Kondo model) by Satori et al. (1992) and subsequent work by Sakai et al. (1993).In this work a more aurate estimate for the transition is given, TK/∆sc ≃ 0.3, i.e. for
TK/∆sc > 0.3 we have a singlet ground state whilst for TK/∆sc < 0.3 the ground state isa doublet. It is also found there that at the transition, TK/∆sc ≃ 0.3, where the boundstate energy of the LES beomes zero. Yoshioka and Ohashi (2000) presented anotherNRG study, for the Anderson impurity model with superonduting bath, where a largerparameter spae is aessible. A more extensive omparison with mean �eld results is giventhere and the behaviour of the LES is analysed in detail. Many of the more reent papers(Rozhkov and Arovas 1999, Matsumoto 2001, Veino et al. 2003, Siano and Egger 2004,Choi et al. 2004, Oguri et al. 2004) (theoretially), (Buitelaar et al. 2002, van Dam et al.2006) (experimentally) fous on the impurity (quantum dot) embedded in two superon-duting baths with di�erent (omplex) superonduting order parameters. There a phaseshift dependent Josephson urrent an be observed whih varies with the model param-eters. Situations with two hannels with Josephson or nonequilibrium urrents are notovered in this hapter. The analysis presented here fouses on the spetral properties ofan impurity in a superonduting bath. For low energies within the superonduting gapwe alulate the position and weight of the LES and also give the values for the induedanomalous on-site orrelation. We also present results for the spetral density for the diag-onal and o�diagonal orrelations funtions on all energy sales and present singlet-doubletground state phase diagrams for the symmetri and non-symmetri ase. We start by out-lining some of the details for the NRG alulation with a superonduting medium. Manyaspets disussed in this hapter are published in referene Bauer et al. (2007b).



5.2 The Anderson model with superonduting medium 855.2 The Anderson model with superonduting medium5.2.1 NRG approahStarting point is the Anderson impurity model in the form
H = Hd +Hmix +Hsc. (5.1)The loal interating part is given as before in equation (1.1) and also the mixing term hasthe usual form,

Hmix =
∑

k,σ

Vk(c†k,σcd,σ + h.c.). (5.2)In order to avoid onfusion in the notation with the superonduting gap we de�ne for thishapter Γ = πV 2ρc(0) as the energy sale for hybridisation (ρc(0) = 1/2D as before). Thesuperonduting medium is given in a BCS mean�eld form
Hsc =

∑

k,σ

εkc
†
k,σck,σ − ∆sc

∑

k

[c†
k,↑c

†
−k,↓ + h.c.], (5.3)where ∆sc is the superonduting gap, whih is taken to be real for simpliity. In (5.3) we letthe summations run over all k in a wide band. Another energy sale ωD, the Debye uto� inBCS theory, ould enter at this stage to restrit the summation. As shown by Satori et al.(1992) with a saling argument, this e�et does not alter the results substantially. We willkeep it in mind for some of the following arguments, but neglet it later (see below).For the NRG approah we have to derive a disrete form of the Hamiltonian, whih anbe diagonalised onveniently in a renormalisation group sheme desending to lower ener-gies. This is done in an analogous fashion as for a metalli medium, whih was desribedin setion 2.1. Essentially, there are three steps whih only a�et Hmix and Hsc:(1) Mapping to a one-dimensional problem, (2) logarithmi disretisation, (3) Basis trans-formation. We obtain �nally [f. (2.1)℄

Hmix/D =

√

Γ

πD

∑

σ

(f †0σcd,σ + h.c.), (5.4)and
Hsc/D =

∞
∑

σ,n=0

γn+1(f
†
nσfn+1,σ + h.c.) − ∆sc

D

∞
∑

n=m0

(f †n↑f
†
n,↓ + h.c.) (5.5)where γn has the usual form (Hewson 1993a). m0 orresponds to the site on the hain, atwhih the energy sale has reahed ωD, and it is expliitly given by

m0 = − log(ωD/D)

log Λ
. (5.6)



86 Loally orrelated eletrons in a superonduting bathWe follow earlier works (Satori et al. 1992, Yoshioka and Ohashi 2000) and restrit ouralulations to the asem0 = 0, whih orresponds to ωD = D. As mentioned above detailsabout the justi�ation for this in the NRG approah have been disussed by Satori et al.(1992).The iterative diagonalisation sheme is set up in the same way as in the normal ase.Due to the anomalous term in the superonduting band the harge Q is not a goodquantum number of the system any longer, i.e. the harge operator does not ommute withthe Hamiltonian. Thus eigenstates are haraterised only in terms of the spin quantumnumber S. The numerial RG transformation is de�ned by
HN+1 = R(HN ) =

√
ΛHN + ξ′N+1(f

†
NσfN+1,σ +h.c.)− ∆N+1(f

†
N+1,↑f

†
N+1,↓ + h.c.)

∣

∣

∣

N≥m0

,(5.7)with ξ′N as in hapter 2 and
∆N =

{

Λ(N−1)/2∆sc for N ≥ m0

0 otherwise.
(5.8)We an see that the superonduting gap beomes a dominating energy sale for large Nand a relevant perturbation. It does not make sense to ontinue NRG iterations downto energies muh below this sale as there are no ontinuum states anymore in the gap.Therefore, we stop the NRG proedure at an Nmax, suh that the typial energy sale

Λ−(Nmax−1)/2 is not too muh smaller than the superonduting gap ∆sc. More details forthe iterative diagonalisation are given elsewhere (Bauer 2007).5.2.2 Relevant Green's funtionsFor the Green's funtions it is onvenient to work in Nambu spae, C
†
d = (c†d,↑, cd,↓), with

2 × 2 matries. The relevant retarded Green's funtions are then
Gd(ω) = 〈〈Cd;C

†
d〉〉ω =

(

〈〈cd,↑; c
†
d,↑〉〉ω 〈〈cd,↑; cd,↓〉〉ω

〈〈c†d,↓; c
†
d,↑〉〉ω 〈〈c†d,↓; cd,↓〉〉ω

)

=

(

G11(ω) G12(ω)

G21(ω) G22(ω)

)

. (5.9)In the NRG approah we alulate G11 and G21 diretly and infer G22(ω) = −G11(−ω)∗,whih follows fromGret
A,B(ω) = −Gadv

B,A(−ω) andGret/adv
A,B (ω) = −Gret/adv

A†,B† (−ω)∗ for fermionioperators A, B. Similarly, we an �nd G12(ω) = G21(−ω)∗. In the derivation one has tobe areful and inlude a sign hange for up down spin interhange in the orrespondingoperator ombination.In the non-interating ase we an work out the Green's funtion matrix exatly. To doso rewrite the term Hsc by introduing the vetor of operators and the symmetri matrix
Ck :=

(

ck,↑

c†−k,↓

)

, Ak :=

(

εk −∆sc

−∆sc −εk

)

. (5.10)



5.2 The Anderson model with superonduting medium 87Then Hsc an be written as
Hsc =

∑

k

C
†
kAkCk.The matrix Green's funtion in the superonduting lead is then given by g

k
(iωn) =

(iωn12 −Ak)−1,
g

k
(iωn)−1 = iωn12 − εkτ3 + ∆scτ1, (5.11)where τi are Pauli matries. Note that for a three omponent vetor b

(a12 + b · τ )−1 =
12

a2 − b2
(a12 − b · τ ), (5.12)and hene

g
k
(iωn) =

iωn12 + εkτ3 − ∆scτ1
(iωn)2 − (ε2k + ∆2

sc)
. (5.13)In the wide band limit with a onstant density of states the hybridisation term takes theform

V 2 1

N

∑

k

g
k
(iωn) = −Γ

iωn12 + ∆scτ1
E(iωn)

. (5.14)We are mostly interested in the limit of zero temperature (iωn → ω ∈ R) here, and thefuntion in the denominator E(z) after analyti ontinuation reads
E(ω) =

{

−isgn(ω)
√

ω2 − ∆2
sc for |ω| > ∆sc

√

∆2
sc − ω2 for |ω| < ∆sc

. (5.15)In the non-interating ase for T = 0, we have therefore
G0

d(ω)−1 = ω12 − εdτ3 + Γ
ω12 + ∆scτ1

E(ω)
. (5.16)The Green's funtion is obtained by matrix inversion, whih yields with (5.12)

G0
d(ω) =

1

D(ω)

[

ω
(

1 +
Γ

E(ω)

)12 −
Γ∆sc

E(ω)
τ1 + εdτ3

]

, (5.17)where the determinant, D(ω) := det(G0
d(ω)−1) is given by

D(ω) = ω2
[

1 +
Γ

E(ω)

]2
− Γ2∆2

sc

E(ω)2
− ε2d. (5.18)The full Green's funtion matrix Gd(ω)−1 at the impurity site is given by the Dyson matrixequation

Gd(ω)−1 = G−1
0 (ω) − Σ(ω), (5.19)where we have introdued the self-energy matrix Σ(ω).



88 Loally orrelated eletrons in a superonduting bathSelf-energy using the higher F -Green's funtionAs desribed earlier in hapter 2 there is a method to alulate the self-energy employing ahigher F -Green's funtion, and it an also be used for the superonduting ase. In orderto derive the equations of motions for the orrelation funtions, the identity
ω〈〈A;B〉〉ω + 〈〈[H,A], B〉〉ω = 〈[A,B]η〉 (5.20)(η = + for fermions) is useful. The alulation taking into aount all o�diagonal termsyields the following matrix equation

G−1
0 (ω)Gd(ω) − UF (ω) = 12, (5.21)with the matrix of higher Green's funtions F (ω),

F (ω) =

(

F11(ω) F12(ω)

F21(ω) F22(ω)

)

. (5.22)We have introdued the matrix elements F11(ω) = 〈〈cd,↑n↓; c
†
d,↑〉〉ω, F12(ω) = 〈〈cd,↑n↓; cd,↓〉〉ω,

F21(ω) = −〈〈c†d,↓n↑; c
†
d,↑〉〉ω and F22(ω) = −〈〈c†d,↓n↑; cd,↓〉〉ω. In the NRG we alulate F11and F21 and the others follow from F12(ω) = −F21(−ω)∗ and F22(ω) = F11(−ω)∗. We ande�ne the self-energy matrix by

Σ(ω) = UF (ω)Gd(ω)−1. (5.23)The properties of the Green's funtion and the higher F -Green's funtion lead to therelations Σ12(ω) = Σ21(−ω)∗ and Σ22(ω) = −Σ11(−ω)∗ for the self-energies. We antherefore alulate the diagonal self-energy Σ(ω) = Σ11(ω) and the o�diagonal self-energy
Σoff(ω) = Σ21(ω) and dedue the other two matrix elements from them. With the relation(5.23) between G, F and Σ the Dyson equation is reovered in (5.21),

Gd(ω)−1 = G−1
0 (ω) − Σ(ω). (5.24)Therefore, the Green's funtion an be alulated from the free Green's funtion as givenin (5.17) and the self-energy as alulated from (5.23). Details for the matrix elements forthe atual alulation are given elsewhere (Bauer 2007).5.2.3 Andreev bound statesThe denominator of the Green's funtion in equation (5.19) an vanish inside the gap

|ω| < ∆sc. As the imaginary part of the self-energy is zero in the gap this leads toexitations with in�nite lifetime there. They orrespond to the loalised exited states(LES) or Andreev bound states. For the non-interating ase they are determined by theequation D(ω) = 0 [f. eq. (5.18)℄,
ω2 − ε2d − Γ2 +

2ω2Γ

E(ω)
= 0. (5.25)



5.2 The Anderson model with superonduting medium 89This is an equation in ω2, thus if E0
b is a solution so is −E0

b . In general, in the interatingase we have to analyse the equation
[

ω−εd+
ωΓ

E(ω)
−Σ(ω)

][

ω+εd+
ωΓ

E(ω)
+Σ(−ω)∗

]

−
[Γ∆sc

E(ω)
−Σoff(ω)

][Γ∆sc

E(ω)
−Σoff(−ω)∗

]

= 0.(5.26)One the self-energies are alulated it is possible to solve this equation iteratively. Wewill develop a simpli�ed desription by using an approximate form of the self-energy. Firstnote that in the gap, |ω| < ∆sc, ImΣ(ω) = ImΣoff(ω) = 0. We expand the real part of thediagonal self-energy Σ(ω) to �rst order around ω = 0, whih is motivated by the Fermiliquid expansions for the normal ase and the numerial results for the behaviour in thisregime. The o�diagonal self-energy is approximated by the real onstant Σoff(0), as itdoes not vary muh for small ω. This approximation for the self-energy is easy to justifyif the gap is small parameter, suh that it only overs small values of ω, but also worksreasonably well for larger gap parameters. Hene, we �nd instead of (5.26) the equation
ω2 − ε̃2d − Γ̃2 − z2Σoff(0)2 +

2Γ̃[ω2 + ∆sczΣ
off(0)]

E(ω)
= 0, (5.27)where renormalised parameters ε̃d = z[εd + Σ(0)] and Γ̃ = zΓ were introdued. As usual

z−1 = 1−Σ′(0). The form of the equations (5.25) and (5.27) is very similar and both anbe easily solved numerially to give the bound state solutions ω = Eα
b = αEb, α = ±. Dueto the o�diagonal self-energy term Σoff(0) a simple interpretation of the interating theorybased on using renormalised parameters ε̃d, Γ̃ in equation (5.25) for the non-interatingtheory is, however, not possible.Based on the same idea we an give approximate expressions for the weights of thebound states wα

b by expanding the diagonal part of the Green's funtion around ω = Eα
b .We an write the Green's funtion in the gap near the bound states ω ≃ ±Eb as

G(ω) =
w−

b

ω − E−
b + iη

+
w+

b

ω − E+
b + iη

. (5.28)Using the above approximation for the self-energy the weights are found to be
wα

b =
z

2
E(Eb)

2
E(Eb)(1 + α ε̃d

Eb
) + Γ̃

E(Eb)2(E(Eb) + 2Γ̃) + Γ̃(E2
b + ∆sczΣoff(0))

. (5.29)In a more sophistiated approximation one ould onsider an expansion of the self-energiesaround the bound state energies Eb rather than ω = 0. Various things an be seen fromthe expression (5.29). First we note that in the partile hole symmetri ase, ε̃d = 0,
w+

b = w−
b = wb. As the weights are proportional to the renormalisation fator z they areexpeted to derease with inreasing interation U . One an also easily see that for boundstates lose to the gap, |Eb| → ∆sc, the weights go to zero, wα

b → 0.A useful limit to obtain analytial results is to onsider the ase where the superon-duting gap is a large parameter, ∆sc → ∞ (Oguri et al. 2004). Then one an show that



90 Loally orrelated eletrons in a superonduting baththe problem essentially redues to a loalised model with an anomalous on-site term whihis of the order of the hybridisation Γ. We will write it in the form
Hd =

∑

σ

ξd(c
†
d,σcd,σ − 1) − Γ[c†d,↑c

†
d,↓ + h.c.] +

U

2

(

∑

σ

nd,σ − 1
)2
, (5.30)where ξd = εd + U/2. Without interation this Hamiltonian an be diagonalised by aBogoliubov transformation and the exitation energies Ed =

√

ξ2d + Γ2 are found, whihusually lie in the gap as Γ ≪ ∆sc as assumed initially. This gives a diret piture of theemergene of the Andreev bound states for large ∆sc.We an disuss the ground state rossover from the singlet to the doublet state in termsof the single site Hamiltonian (5.30). First note that the S = 1/2 (doublet) states, | ↑〉 and
| ↓〉, are eigenstates of (5.30) with energy 0. The S = 0 singlet states, empty site |0〉 anddoubly oupied site | ↑↓〉, are not eigenstates of (5.30). However, the linear ombinationsin the BCS-form,

|Ψ1〉 = ud|0〉 + vd| ↑↓〉, |Ψ2〉 = vd|0〉 − ud| ↑↓〉, (5.31)are eigenstates with eigenvalues E1 = −Ed + U/2 and E2 = Ed + U/2, respetively. Theoe�ients ud, vd are given by
u2

d =
1

2

(

1 +
ξd
Ed

)

, v2
d =

1

2

(

1 − ξd
Ed

)

. (5.32)The ground-state is therefore a singlet as long as E1 < 0 and a doublet otherwise. Theondition E1 = 0 or
ξ2d
U2

+
Γ2

U2
=

1

4
(5.33)de�nes therefore the phase boundary for the transition. It is a semiirle in the (ξd/U)-

(Γ/U)-plane with radius 1/2, whih is shown in �gure 5.11. How this phase boundarylooks like for �nite gap ∆sc will be investigated later in setion 5.5, when we look at thesituation away from partile hole symmetry. In the ase of partile hole symmetry ξd = 0and the ondition redues to Γ = U/2.Having established the most important relations we will in the next setion presentresults for behaviour of the bound state in the symmetri AIM with superonduting bathwith a �nite gap parameter.5.3 Bound state behaviour for the symmetri modelThe position and weight of the Andreev bound states in the gap an be alulated fromthe NRG routine for spetral funtions as the lowest spetral exitation (SE). The boundstates orrespond to a single exitation with energy E±
b = ±Eb, |Eb| < ∆sc, and arry aertain weight wb. In �gure 5.1 we show the bound state energies ±Eb for a series of values



5.3 Bound state behaviour for the symmetri model 91of the on-site interation U and di�erent values for the gap in the medium ∆sc. Here andin the following we take a �xed value for the hybridisation, πΓ = 0.2. All quantities anbe thought of as being saled by half the band width D = 1.
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Figure 5.1: Bound state energies Eb (left) and weights wb (right) for various U/πΓ and
∆sc. Both quantities have been saled by the orresponding value of ∆sc.We an see that in the non-interating ase the bound state energy for the ases withsmall gap (∆sc = 0.001, 0.01) is very lose to ±∆sc and dereases to zero with inreasinginteration. For a ritial value Uc the nature of the ground-state hanges from a singlet(S = 0) to a doublet (S = 1/2) and at this point Eb = 0. For this transition we an thinkof the positive E+

b and negative solution E−
b for the bound states as rossing at ω = 0.If the the interation is inreased further, ∣∣E±

b

∣

∣ beomes �nite again and inreases with
U . The larger the gap ∆sc the smaller ritial value Uc for this ground state transitionbeomes. In the ase where ∆sc is of the order of Γ - as an be seen for the ase ∆sc = 0.06- the bound state energy Eb lies within the gap, detahed from the ontinuum part at ∆sc,already for the non-interating ase, but otherwise shows a similar behaviour as desribedabove.On the right hand side of �gure 5.1 the weight wb of these bound states is plotted.We have marked the position Uc of the singlet-doublet rossover point by a symbol onthe x-axis. The two urves for a value of the gap ∆sc = 0.001 and ∆sc = 0.01 have amaximum for some intermediate value of U whih is smaller than the ritial Uc for theground state transition. For the other urve (∆sc = 0.06) the weight is maximal for thenon-interating ase. In all ases the weight beomes very small for large U . Note thatwe plot the weight saled by the gap, wb/∆sc, and therefore the absolute values are largerfor the ases with larger superonduting gap. At the singlet-doublet transition we ansee disontinuous behaviour as the weight hanges sharply. This is a feature of the zerotemperature alulation, where the matrix elements hange their values when the levelsross on inreasing U , suh that the nature of the ground state hanges. It will be seenfor the anomalous orrelations as well. For �nite temperature this disontinuity beomessmooth.



92 Loally orrelated eletrons in a superonduting bathIn the last setion we disussed how the bound state energy, whih so far we havededued from the spetral exitations (SE), ould also be alulated from the bound stateequation (BE) (5.26). The latter was derived by expanding the self-energy to �rst order.It involves the renormalised parameters ε̃d, Γ̃ and the onstant value of the o�diagonalself-energy Σoff(0). In �gure 5.2 we ompare the bound state energies alulated by thesetwo methods for two values of the gap ∆sc = 0.005 (left) and ∆sc = 0.06 (right).
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Figure 5.2: Bound state energies Eb as alulated from the spetral exitations (SE) andfrom the bound state equation (BE) (5.26) with renormalised parameters for ∆sc = 0.005(left) and for ∆sc = 0.06 (right) for various U/πΓ.We an see that for values of U < Uc the agreement is exellent in both ases. However,when U ≥ Uc we �nd less aurate values with the method based on bound state equation(BE) with renormalised parameters. Sine the method to alulate the bound state energyfrom the spetral exitations (SE) is very aurate there must be some problem with theBE method. The loser inspetion of the numerial results for the diagonal and o�-diagonalself-energies reveals that the linear and onstant approximation made to derive the boundstate equation with renormalised parameters (5.26) beomes less valid for U ≥ Uc.In the last setion we also derived an expression (5.29) for the weights wb of the boundstates in the gap. It an be expressed in terms of the renormalised parameters ε̃d, Γ̃, theo�diagonal self-energy Σoff(0) and the bound states energy Eb. In �gure 5.3 we omparethe weights alulated from the spetral exitations (SE) with the ones from the boundstate equation (BE) analysis with renormalised parameters. We show the results for thesame parameters ∆sc = 0.005 (left) and ∆sc = 0.06 (right). We an see for both asesthat the overall behaviour of the weights as a funtion of U is desribed reasonably wellby equation (5.29). It is, however, learly visible that the agreement is between the SEand BE values is muh better in the singlet regime for U < Uc. This is similar as observedfor the values of the bound states energies Eb in �gure 5.2, and the reason for this is thesame. The disontinuity for the weight is not reprodued by the approximation based onequation (5.29). As an be seen from that equation this would require a sudden hangein the self-energy as funtion of U , whih was not found with su�ient auray in the
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Figure 5.3: Weights wb for the Andreev bound states as alulated from the spetralexitations (SE) and from the equation (5.29) with renormalised parameters for ∆sc =

0.005 (left) and for ∆sc = 0.06 (right) for various U/πΓ.present alulation. This an partly be attributed to the broadening proedure involvedand to the inauraies when alulating the numerial derivative.The anomalous expetation value 〈d↑d↓〉 is an indiator for the strength of the proximitye�et of the superonduting medium at the impurity site and quanti�es the indued on-site superonduting orrelations. In the following �gure 5.4 we show the dependene of
〈d↑d↓〉 on the interation U/πΓ for the same values of ∆sc as in �gure 5.1. The values aresaled by the gap ∆sc.
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TK/∆sc ≃ 0.3 with TK given in equation (5.34).We see that as a general trend 〈d↑d↓〉 dereases for inreasing on-site interation. This isexpeted sine the superonduting orrelations are suppressed by the repulsive interation.We have marked the ground state transition with a symbol on the x-axis, and we see that
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〈d↑d↓〉 hanges disontinuously in magnitude and sign there. The sign hange is due to aphase hange of π of the loal order parameter whih ours at the transition as disussedin referene Balatsky et al. (2006). It is harateristi for this zero temperature quantumphase transition. At �nite temperature this behaviour beomes ontinuous. In the situationof in�nite gap in the medium, as disussed above, at the transition point 〈d↑d↓〉 drops tozero for the singlet ground state.On the right hand side of �gure 5.4 we present a phase diagram for singlet and doubletstate for the symmetri model. For small U the ground state is always a singlet. It anbeome a doublet when U/πΓ is inreased. The ritial Uc for the transition dereases withinreasing value of the gap ∆sc as an be seen in the diagram. In the limit ∆sc → ∞, theritial interation is given by Uc/πΓ = 2/π, whih is shown with a dotted vertial line inthe �gure. As mentioned earlier there have been estimates of the boundary between singletand doublet in the strong oupling regime (Satori et al. 1992, Yoshioka and Ohashi 2000)as TK/∆sc ≃ 0.3. In this ase the Kondo temperature is given as by Yoshioka and Ohashi(2000) (eq. 3.9),

TK = 0.182U

√

8Γ

πU
e−πU/8Γ. (5.34)We have added a dashed line representing this result whih agrees with the ones presentedhere in the strong oupling regime, but starts to deviate for smaller values of U . In the limit

∆sc → 0 the ground-state is a singlet for any value of U as the Kondo e�et always leadsto a sreened impurity spin in a singlet formation. For �nite gap the nature of the singletground state an di�er depending on the magnitude of U . We expet a �superondutingsinglet� for small U and a Kondo singlet for larger U . We will omment on this again atthe end of the next setion.5.4 Spetral funtionsIn this setion we present results for the behaviour of the spetral funtions. The diagonaland o�diagonal Green's funtion an be alulated diretly from the Lehman representationas illustrated in hapter 2 and we use the method based on the Anders-Shiller basis. Asin this proedure the exitations for the spetral peaks in the Green's funtion have to bebroadened, it is di�ult like this to obtain a sharp spetral gap at |ω| = ∆sc. We an,however, determine the self-energy omponents from the Green's funtion and the higher
F -Green's funtion [f. eq. (5.23)℄ as explained earlier. We use the exat expression for thenon-interating Green's funtion G0

d(ω) in equation (5.17), whih inludes a sharp spetralgap, and the Dyson matrix equation (5.24) to alulate the diagonal and o�diagonal Green'sfuntion. This is the way the Green's funtion are alulated for the region outside thegap, |ω| > ∆sc. Inside the gap, |ω| < ∆sc, we have extrated the delta-funtion peaks forthe Andreev bound states energies Eb and weights wb from the NRG exitation data forthe Green's funtion. The delta-funtions are represented by an arrow. Altogether the



5.4 Spetral funtions 95diagonal spetral funtion ρ(ω) = −ImG(ω)/π an then be written in the form
ρ(ω) =

∑

α=±

wbδ(ω − Eα
b ) + ρcont(ω), (5.35)where ρcont(ω) is the ontinuum part for |ω| > ∆sc.In �gure 5.5 we show the resulting spetral funtion (5.35) for ∆sc = 0.005 for thediagonal Green's funtion at the impurity site for a number of di�erent values of U . Asbefore πΓ = 0.2 throughout the setion.
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Figure 5.5: The spetral density ρ(ω) for various values of U for the whole energy regime(left) and the region in the gap (right); ∆sc = 0.005.In the plot on the left hand side we give the spetrum over the full energy range. Onean see the development of the atomi limit peaks at ±U/2 as the interation is inreased,and also the beginning of the formation of a Kondo resonane at low frequenies. As Uinreases the Kondo resonane beomes narrower, its formation, however, is suppressed,sine in the gap region the ontinuum part of the spetrum vanishes. In the gap there areonly the delta funtion ontributions from the Andreev bound states. These are shownin an enlarged plot in �gure 5.5 on the right, where the arrows give the position of thebound state E±
b and their height indiates the spetral weight wb. It an be seen that theposition of the bound state hanges when we inrease the interation. The weight �rstinreases and then dereases as a funtion of U , whih orresponds to the features whihwas disussed expliitly in the last setion in �gure 5.1. Note that the largest value of

U shown, is greater than the ritial Uc for the singlet-doublet transition (Uc/πΓ ≃ 3.2).In the high energy spetrum there is no signi�ant hange to be seen in the behaviour,however at low energies we observe the rossing of the bound state energies at ω = 0 at
Uc.The o�diagonal part of the spetrum ρoff(ω) = −ImGoff (ω)/π has a similar general formas the diagonal part,

ρoff(ω) =
∑

α=±

w̄α
b δ(ω − Eα

b ) + ρoff
cont(ω), (5.36)
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Figure 5.6: The spetral density ρoff(ω) for various values of U for the whole energy regime(left) and the region in the gap (right); ∆sc = 0.005.where the weights w̄α
b an have positive and negative values. For half �lling the spetrum

ρoff(ω) is an asymmetri funtion of ω. In �gure 5.6 we show the spetral funtion (5.36)for ∆sc = 0.005 for the o�diagonal Green's funtion at the impurity site for a numberof di�erent values of U . In the plot on the left hand side we an see the behaviour forthe ontinuum part outside the gap. Notie that the frequeny range only extends up to
ω = ±0.1. We an see a peak lose to ω = ±∆sc, whih is suppressed for larger U andhanges sign towards the singlet-doublet transition. The behaviour of the bound statepeaks in the o�diagonal spetrum is displayed on the right hand side of the �gure. We ansee similar features as observed before in the diagonal part, i.e. the weight �rst inreaseswith U and then dereases. If we follow the exitations with the weight of the same signwe an see, that at the singlet-doublet transition the bound state levels ross at ω = 0.In �gure 5.7 we show the diagonal spetral funtion for a larger gap ∆sc = 0.02 for thediagonal Green's funtion at the impurity site for a number of di�erent values of U .
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Figure 5.7: The spetral density ρ(ω) for various values of U for the whole energy regime(left) and the region in the gap (right); ∆sc = 0.02.The overall piture on the left is similar to the ase in �gure 5.5 with the smaller gap. Due



5.4 Spetral funtions 97to the larger gap the formation of the entral Kondo resonane is ompletely suppressed,but the high energy spetrum is as before. From the behaviour within the gap (right sidein �gure 5.7) we an see that the bound state position E±
b goes to zero for smaller U thanin the ase ∆sc = 0.005, and hene the ground state transition ours for smaller Uc forthe larger gap (Uc/πΓ ≃ 2.03). This was disussed in the last setion. For the values of Ushown the spetral weight of the bound states wb dereases with inreasing U . Note thatthe weights wb of the peaks in the gap have been saled di�erently in �gures 5.5 and 5.7,so that their height should not be ompared diretly.The spetral funtion of the o�diagonal Green's funtion at the impurity site (5.36) forthis value of the gap, ∆sc = 0.02, is shown in �gure 5.8 for a number of di�erent values of

U .
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Figure 5.8: The spetral density ρoff(ω) for various values of U for the whole energy regime(left) and the region in the gap (right); ∆sc = 0.02.For larger frequenies outside of the gap (left) we an see a peak near ω = ∆sc, whoseheight is redued due to the larger interation. At larger frequenies we �nd that the tailsdevelop a broad peak for larger values of U . This has not been observed in the ase withthe smaller gap shown in �gure 5.6. Also a sign hange of the low energy peak an beobserved as before. The behaviour near and in the gap (right) an be understood as beforefor the bound states, where in this ase we have two bound states for the singlet groundstate and two for the doublet ground state.We have analysed the transition from a singlet to a doublet ground state in detail in thespetral exitations. Within the parameter regime for the singlet ground state there are twopossibilities for the nature of the ground state. It an be a singlet orresponding to an s-wave pair like in the wave funtion given in equation (5.31), whih is a superposition of zeroand double oupation. This is the natural singlet ground state for a BCS superondutor.In the strong oupling regime U/πΓ > 2 we an, however, also have a sreened loal spin,i.e. a Kondo singlet. The wave funtion has a di�erent form then and onsists rather of asingly oupied impurity state oupled to the spins of the medium as many-body singlet.In our NRG alulations it is not easy to distinguish these di�erent natures of the singlet



98 Loally orrelated eletrons in a superonduting bathground states. We an, however, get an indiation for what is favoured from the twopartile response funtions in the spin and in the harge hannel. In �gure 5.9 we showthe imaginary part of the dynami harge and spin suseptibility, χc(ω) [f. eq. (1.25)℄and χs(ω) [f. eq. (1.24)℄, for ∆sc = 0.005 and a series of values for the interation U .
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Figure 5.9: The imaginary part of the dynami harge (left) and spin (right) suseptibilityvarious values of U and ∆sc = 0.005. The sale on both axes is the same suh that theresults an be ompared well.We an see that the peaks in the harge suseptibility exeed the ones in the spin susep-tibility for zero and weak interation indiating the dominane of the symmetry breakingin the harge hannel, and a ground state of superonduting singlet nature. However,for U/πΓ > 1 the spin suseptibility develops large and narrow peaks at low frequeny.This signals the importane of the spin �utuations and low energy spin exitations andindiates a ground states of a sreened spin. In ontrast the dereasing peaks in the hargesuseptibility for large U represent the e�et of suppressing the superonduting on-siteorrelations.5.5 Away from partile hole symmetrySo far we have onsidered the situation at partile-hole symmetry, εd = −U/2. In thissetion we will brie�y disuss a few aspets that hange in the situation away from partilehole symmetry. Let us onsider the ase where for a given gap ∆sc, on-site interation U ,and hybridisation Γ, the ground-state of the system is a doublet at half �lling, ξd = 0.When ξd is inreased, we �nd that a transition to a singlet state an our at a ertainvalue ξc
d. Similar to the ases shown for the symmetri model the ground state hange isaompanied by vanishing energy of the bound state Eb. This is illustrated in the following�gure 5.10, where we have plotted the bound state energy Eb for �xed ∆sc = 0.01, twovalues of U/πΓ = 3, 5 and a series of values of the on-site energy saled by U , ξd/U . Asbefore we have πΓ = 0.2.The ritial interation for the ground state transition for this ase at half �lling is Uc/πΓ ≃
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Figure 5.10: The dependene of the bound state energies Eb (left) and weights wb (right)on ξd/U for ∆sc = 0.01 and U/πΓ = 3, 5.
2.6, suh that both ases are have a doublet ground state for ξd = 0. We an see thatwith inreasing asymmetry ξd the bound state energy |Eb| �rst dereases towards zeroand then inreases again in the singlet regime for ξd > ξc

d. As in the symmetri ase thesinglet-doublet transition is aompanied by |Eb| → 0. The weights for these bound statesare shown on the right hand side of �gure 5.10. Away from partile hole symmetry theweight w+
b for the positive energy E+

b and w−
b the one for the negative bound state E−

b arenot equal, as was already visible in equation (5.29). We an see that the weights w±
b startto assume di�erent values when ξd is inreased from 0. At the ground state transition thevalues hange disontinously similar as observed in the half �lled ase. If we follow the boththe positive weight w+

b and the negative w−
b separately the weights ross at the transitionpoint. If, however, we think of the bound states as rossing at zero, i.e. w+

b ↔ w−
b at thetransition, a more diret onnetion an be dedued from the results shown. In the singletphase there is a maximum for both the positive and the negative bound state weight, morepronouned for w+

b .Also in the asymmetri ase it is possible to alulate the bound state position Ebfrom equation (5.27) and the weights from equation (5.29) employing the renormalisedparameters. We abstain from showing expliit plots here, but note that the results resemble�gures 5.2 and 5.3 in the respet that they give good agreement in the singlet regime, butdeviations for parameters where the ground state is a doublet.In the following �gure 5.11 (left) we show the dependene of the anomalous expetationvalue 〈d↑d↓〉 on the asymmetry saled by the interation ξd/U for the same value of ∆scas in �gure 5.10. The values for 〈d↑d↓〉 are saled by the gap ∆sc. For the values of Ushown, at half �lling the system has a doublet ground state and 〈d↑d↓〉 is negative. Firstit does not vary muh when ξd is inreased, but at the transition to the singlet groundstate we �nd, as in the half �lled ase, a jump to a positive value and 〈d↑d↓〉 inreases toa saturation value on further inreasing ξd. This value is smaller for larger U , similar towhat has been found in the symmetri ase.
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Figure 5.11: Left: Anomalous expetation values for various U/πΓ and ∆sc = 0.01. Right:Phase diagram showing the regions for singlet and doublet ground state as dependent on
Γ/U and ξd/U for di�erent values of the gap ∆sc. The full semiirular line orrespondsto the phase boundary for ∆sc = ∞ as disussed in equation (5.33).On the right hand side of �gure 5.11 we present a global phase diagram of parameterregimes for singlet and doublet ground states for the non-symmetri ase. This representa-tion in the Γ/U -ξd/U -plane is motivated by the result for the phase boundary for the ase
∆sc → ∞ derived in equation (5.33). The orresponding semiirle is shown in the �gureaompanied by the phase boundaries for �nite values of the gap ∆sc. Note that the lineon the x-axis, to whih the phase boundary is be ontrated in the limit Γ → 0 or U → ∞,possess a doublet ground state for |ξd| /U < 1/2.In summary, we have disussed the behaviour of an interating impurity site in amedium with symmetry breaking in the harge hannel. This situation is motivated by thesituation of magneti impurities in superondutors and nanosale quantum dot systemswith superonduting leads. As an additional parameter, the magnitude of the gap ∆scenters the problem. The low energy spetrum is dominated by the gap, and we saw thatthe lowest exitations in these ases are Andreev bound states within the gap region,whih hange position and weight aording to the other parameters. These have beenanalysed in detail in both the symmetri and the asymmetri model. We have shown thata renormalised parameter desription for the position of the weights of the bound states ispossible. We have presented spetral funtions for both the low energy regime and the fullfrequeny range. The behaviour of the ground state, whih an be a singlet or doublet, issummarised in the two phase diagrams in �gures 5.4 and 5.11.



Part IIICorrelated Lattie Systems





Chapter 6The Hubbard model in magneti �eld
Everything should be as simple as itis, but not simpler. Albert Einstein

In the third part of this thesis we study orrelated eletrons in the lattie model subjetto a ertain symmetry breaking. In this hapter we desribe the response of the interat-ing eletrons to a homogeneous magneti �eld. We �rst brie�y desribe the DMFT-NRGformalism with magneti symmetry breaking and explain how the �eld dependent renor-malised parameter and RPT desription from hapter 3 an be generalised. Then wepresent results for di�erent parameter regimes at half �lling and away from half �lling.6.1 Magneti states in the Hubbard modelThe Hubbard model (1.29) had originally been proposed to study magneti ordering andferromagnetism, based on an a mirosopi theory of itinerant orrelated eletrons. Mean�eld theory, indeed, predits spontaneous magneti order in the Hubbard model when theStoner riterion
ρ0(εF)U > 1 (6.1)is satis�ed. More areful studies have revealed, however, that it is not so easy to �nd a ferro-magneti ground state in the Hubbard model and orresponding region of the parameters inthe phase diagram is not so large (Kotliar and Rukenstein 1986, von der Linden and Edwards1991) [for a review see Tasaki (1995)℄. The riterion (6.1) although not aurate gives theright tendeny for the onset of magnetism, i.e. large U and large density of states at theFermi level. A rigorous result for ferromagneti ordering by Nagaoka (1966) for in�nite Uand one hole exist, but it has not been easy to extend this result (von der Linden and Edwards1991). A more reent DMFT study found ferromagnetism for very large U and moder-ate doping (Zitzler et al. 2002). It has also be found in �at band models with an in�nitedensity of states (Mielke 1993). One reason that ferromagnetism is not found for an or-dinary DOS and at smaller values U , say of order of the bandwidth, is that the tendenyto antiferromagneti ordering by the indued by the inter-site spin oupling J , (1.31), isdominant. Antiferromagneti ordering is disussed in the next hapter.



104 The Hubbard model in magneti �eldIn this hapter, rather than studying spontaneous ferromagneti ordering we want tofous on the paramagneti response of the orrelated lattie eletrons towards an externalmagneti �eld. We have seen for the impurity model in setion 3.2 that the suseptibilitytowards the exposure to a magneti �eld inreases with the degree of orrelation and similare�ets will be found here. We also saw there that the orresponding quasipartile behaviourould be haraterised in terms of �eld dependent renormalised parameters. In this setionwe want to extend these methods to the study of the e�et of a magneti �eld on the lattiesystem of orrelated eletrons. We will �nd quite distint behaviour depending on the on-site interation U . The extreme limits an easily be understood without any alulation.In the non-interating limit, we deal with a free Fermi gas and only have to onsider theompetition of the magneti �eld energy of order h with the kineti energy whih is of orderof the hopping t. The system therefore only shows a strong polarisation when h & t, whih- as t is of the order of eletron volts - in pratie is a very large �eld. In the limit of verystrong loal interation, U → ∞, the situation is ompletely di�erent. In the half �lledase every site is singly oupied and thus possess a loal moment as harge �utuationsare ompletely frozen. These unoupled spins, polarise ompletely even for a very small�eld and thus the suseptibility of the system diverges in the zero temperature limit (Curielaw). The intermediate regime between these extreme limits is more interesting, but needsa more areful onsideration, whih is arried out here in the DMFT framework.To study the Hubbard model with an indued magneti symmetry breaking is notonly of interest for theoretial reasons. A number of materials, suh as heavy fermions,vanadium oxide, liquid 3He an be understood as a strongly orrelated Fermi liquid andtheir response to a magneti �eld has been investigated in great detail. For instane,phenomena like �eld and spin dependent e�etive masses and metamagneti behaviourhave been observed experimentally in several heavy fermion ompounds (Aoki et al. 1993,Goodrih et al. 1999, Manekar et al. 2000, Dordevi et al. 2006). The Hubbard model,however, being a one band model is not an appropriate starting point to make a quanti-tative omparison with the heavy fermion lass of materials. A periodi Anderson modelwith a two band struture and inluding the degeneray of the f eletrons would be a bettermodel to desribe these materials. Field dependent e�ets in this model have been studiedby several tehniques, modi�ed perturbation theory (Meyer and Nolting 2001), exat di-agonalisation (Saso and Itoh 1996), 1/N expansion (Ono 1998) and variational approah(Edwards and Green 1997).6.2 Setup for the DMFT with a magneti �eld symmetrybreakingWe onsider the Hubbard model (1.29) in a magneti �eld,
H = −

∑

i,j,σ

(tijc
†
i,σcj,σ + h.c.) −

∑

iσ

µσniσ + U
∑

i

ni,↑ni,↓, (6.2)



6.2 Setup for the DMFT with a magneti �eld symmetry breaking 105where µσ = µ + σh with the �eld h as introdued earlier and the hemial potential
µ. We will treat (6.2) in the DMFT approximation and due to the symmetry breakingterm all relevant quantities introdued in setion 2.3 now beome spin dependent. Thegeneralisation of the equations in setion 2.3 is, however, ompletely straightforward. Thee�etive Weiss �eld G−1

0,σ(τ) arries a spin index, and equation (2.71) generalises to twoequations for eah spin omponent,
G−1

0,σ(ω) = Gloc
σ (ω)−1 + Σσ(ω), (6.3)whih form the two self-onsisteny equations for the approah. One the spin dependentself-energy Σσ(ω) is obtained in the e�etive impurity problem the loal lattie Green'sfuntion Gloc

σ (ω) an be alulated from
Gloc

σ (ω) =
∑

k

Gk,σ(ω) =

∫

dε
ρ0(ε)

ω + µσ − Σσ(ω) − ε
, (6.4)where ρ0(ε) is the density of states for the non-interating model (U = 0). Gloc

σ (ω) an beidenti�ed with the Green's funtion Gσ(ω) of an e�etive AIM, by re-expressing G−1
0,σ(ω)as

G−1
0,σ(ω) = ω + µσ −Kσ(ω), (6.5)suh that

Gσ(ω) =
1

ω − εd,σ −Kσ(ω) − Σσ(ω)
, (6.6)with εd,σ = −µσ. The dynamial mean �eld Kσ(ω), desribing the e�etive mediumsurrounding the impurity, is also spin dependent now. As illustrated in setion 2.3 quitegenerally, starting from an initial form for Kσ(ω), Σσ(ω) is alulated using an appropriateimpurity solver from whih Gloc

σ (ω) an be alulated using equation (6.4). A new resultfor Kσ(ω) is then obtained from equations (6.3) and (6.5). This Kσ(ω) serves as an inputfor the e�etive impurity problem and the proess is repeated until it onverges to give aself-onsistent solution. As impurity solver we use the NRG in this thesis, whih is mostaurate for alulations at T = 0 and for the low energy exitations. There has been aDMFT study of the stati properties of a half-�lled Hubbard model in a magneti �eldusing the exat diagonalisation (ED) method by Laloux et al. (1994).The density of states ρ0(ε) of the non-interating in�nite dimensional model here ishosen as the semi-elliptial form orresponding to a Bethe lattie (2.75)
ρ0(ε) =

2

πD2

√

D2 − (ε+ µ0)2 (6.7)where 2D is the band width, with D = 2t for the Hubbard model, and µ0 the hemialpotential of the free eletrons. We hoose this form, rather than the Gaussian density ofstates of the hyperubi lattie, as it has a de�nite �nite bandwidth.Before onsidering in detail the methods of solving these equations, we look at the formof these equations in the low energy regime, where we an give them an interpretation in



106 The Hubbard model in magneti �eldterms of renormalised quasipartiles. We assume that we an expand Σσ(ω) in powers of
ω for small ω, and retain terms to �rst order in ω only. Substituting this expansion intothe equation for the loal Green's funtion gives

Gloc
σ (ω) = zσ

∫

dε
ρ0(ε/zσ)

ω + µ̃0,σ + O(ω2) − ε
, (6.8)where

µ̃0,σ = zσ(µσ − Σσ(0)), and zσ = 1/[1 − Σ′
σ(0)]. (6.9)We have assumed the Luttinger result that the imaginary part of the self-energy vanishesat ω = 0 (Luttinger 1961). As the Green's funtion in equation (6.8) has the same form ofthat of the non-interating system, apart from the weight fator zσ, we an use it to de�nea free quasipartile propagator, G̃loc

0,σ(ω),
G̃loc

0,σ(ω) =

∫

dε
ρ0(ε/zσ)

ω + µ̃0,σ − ε
. (6.10)We then interpret zσ as the quasipartile weight. We will refer to ρ̃0,σ(ω) derived fromthis Green's funtion via ρ̃0,σ(ω) = −ImG̃0,σ(ω + iδ)/π as the free quasipartile density ofstates (DOS). For the Bethe lattie (6.7), the quasipartile DOS takes the form of a bandwith renormalised parameters,

ρ̃0,σ(ω) =
2

πD̃2
σ

√

D̃2
σ − (ω + µ̃0,σ)2. (6.11)where D̃σ = zσD. We an also de�ne a quasipartile oupation number ñ0

σ by integratingthis density of states up to the Fermi level,
ñ0

σ =

0
∫

−∞

dω ρ̃0,σ(ω). (6.12)It is possible to relate this free quasipartile oupation number ñ0
σ to the expetation valueof the oupation number nσ in the interating system at T = 0. Using the quasipartiledensity of states in equation (6.11), we an rewrite equation (6.12) as

ñ0
σ =

∞
∫

−∞

dε ρ0(ε)θ(µσ − Σσ(0) − ε), (6.13)where ρ0(ε) as given in equation (6.7). Then assuming a generalisation of Luttinger'stheorem (Luttinger 1960) for eah spin omponent, the right-hand side of equation (6.13)is equal to nσ. We then have the result,
ñ0

σ = nσ, (6.14)



6.2 Setup for the DMFT with a magneti �eld symmetry breaking 107that the oupation for eletrons of spin σ is equal to the number of free quasipartileof spin σ, as alulated from equation (6.12). It should be noted that there is no simplegeneralisation of the h = 0 DMFT result (Koller et al. 2005), µ0 = µ − Σ(0), in thespin polarised ase to µ0,σ = µ0 + σh = µσ − Σσ(0). The latter would imply the sameoupation number for eah spin speies of free eletrons and interating eletrons in amagneti �eld, and thus idential magnetisation. Sine, however, non-interating eletronsare less suseptible to a magneti �eld, this is obviously wrong.To evaluate the renormalised parameters, zσ and µ0,σ, whih speify the form of thequasipartile DOS, we use two di�erent methods. The �rst method is a diret one, wherewe use the NRG determined self-energy Σσ(ω) and the hemial potential µσ, and thensubstitute into equation (6.9) for zσ and µ̃0,σ. The seond method is indiret, and makes noreferene to the self-energy. It is based on the quasipartile interpretation of the NRG lowenergy �xed point of the e�etive impurity. It is analogous to what has been done for theimpurity model in hapter 3, and the details are given in appendix B. In suh an approahwe have Kσ(ω) = |Vσ|2g0,σ(ω), where g0,σ(ω) is the one-eletron Green's funtion for the�rst site of the isolated ondution eletron hain. As earlier, we expand the self-energy
Σσ(ω) to �rst order in ω, and then substitute the result into equation (6.6). We an de�nea free quasipartile propagator, G̃0,σ(ω), for the impurity site as

G̃0,σ(ω) =
1

ω − ε̃d,σ − |Ṽσ|2g0,σ(ω)
, (6.15)where

ε̃d,σ = zσ(εd,σ + Σσ(0)), |Ṽσ|2 = zσ|Vσ|2, (6.16)In the DMFT approah we identify G̃0,σ(ω) with the loal quasipartile Green's funtionfor the lattie (6.10),
G̃loc

0,σ(ω) = G̃0,σ(ω), (6.17)whih spei�es the form of g0,σ(ω) in (6.15) and yields µ̃0,σ = −ε̃d,σ. The quasipartileweight zσ is then obtained from the relation zσ = |Ṽσ/Vσ |2 in equation (6.16), and µ̃0,σfrom µ̃0,σ = −ε̃d,σ.As an extension of the RPT onsiderations in hapter 3 we an also alulate the loaldynami spin suseptibilities, χloc(ω) =
∑

k χ(ω,k). We fous on the transverse part χt(ω)for this model, whih an be also obtained from a similar equation to (3.36). The details aredesribed in Bauer and Hewson (2007b). We an alulate the loal on-site quasipartileinteration Ũ as in the impurity ase, but we do not have the simple formula relating Ũ to
χt(0) that enabled us to dedue the irreduible quasipartile interations Ũt; the impurityformula we used earlier is only valid in the wide band limit. To determine Ũt in the lattiease we use the ondition that Reχt(ω) �ts the NRG result at the single point ω = 0. Wean then ompare the results based on these RPT formulae, whih take into aount therepeated quasipartile sattering, with the NRG results over the whole frequeny range.An analogous proedure applies for χl(ω) (Bauer and Hewson 2007b).



108 The Hubbard model in magneti �eld6.3 Results at Half-�llingWe present results at half-�lling for three main parameters regimes where we �nd qual-itatively di�erent behaviour (Laloux et al. 1994). The results in all ases will be for aBethe lattie with a band width W = 2D = 4, suh that t = 1 sets the energy sale. Inonentrating on the �eld indued polarisation, we do not inlude the possibility of anti-ferromagneti ordering. The regimes are a relatively weak oupling regime (a) where Uis smaller than the band width, an intermediate oupling regime (b) with W < U < Uc,where Uc is the value at whih a Mott-Hubbard gap develops in the absene of a magneti�eld [Uc ≈ 5.88, Bulla (1999)℄, and () a strong oupling regime with U > Uc.6.3.1 Weakly orrelated regimeThe �rst plot in �gure 6.1 (left) gives the spetral densities for the majority spin eletrons
ρ↑(ω) for various magneti �eld values in the weakly orrelated regime, U = 2.
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∆g(h) = 2h + U − W between the upper (minority) and lower (majority) band, whihboth have the semi-elliptial form as for the non-interating system with W = 4, as an beseen already in 6.1 (left) for h = 0.9. The inverse of the quasipartile weight zσ(h), whihin the DMFT orresponds to the enhanement of the e�etive mass m∗

σ(h) = m/zσ(h),is shown as a funtion of h in �gure 6.1 (right). We alulated the values of zσ(h) usingthe two methods desribed earlier, i.e. diretly from the numerial derivative of the NRGself-energy at ω = 0 and from the impurity �xed point (FP) (see appendix B), where
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zσ = |Ṽσ/Vσ |2. At half �lling we have z↑(h) = z↓(h) and we have plotted the average ofthe values for σ = ↑ and σ = ↓, whih is ompared for the two methods. The deviation forthe values for the di�erent spins is only due to small numerially inauraies and is lessthan 2%. The method based on analysing the exitation of the impurity �xed point (FP)is only appliable in the metalli regime, when the system is not ompletely polarised.The values of zσ(h) inrease from about 0.75 to 1, whih orresponds to a progressive�de-renormalisation� of the quasipartiles with inreasing �eld, as observed earlier for theimpurity model in setion 3.2. Sine the interation term in the Hubbard model ats onlyfor opposite spins it is lear that there is no renormalisation when the system is ompletelypolarised with one band fully oupied and the other empty. We have also alulated, butdo not display the expetation value of the double oupany 〈n↑n↓〉. It is found that itdereases with inreasing �eld, whih further illustrates why the interation term beomesless important for larger �elds.
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U = 2 and for the full range of magneti �elds h.We an also follow the �eld dependene of the renormalised hemial potential µ̃0,σ(h)as shown in �gure 6.2 (left). It is shown dedued from the renormalised parameter (RP)
ε̃d,σ and as alulated diretly from the self-energy. The agreement is very good over thefull range of magneti �elds. Mean �eld theory is valid for very weak interations, so weompare our results for µ̃0,σ(h) for U = 2, with the mean �eld value µ̃mf

0,σ = µ+σh−Unmf
−σin �gure 6.2 (left). The results oinide for h = 0, when µ̃mf

0,σ = 0 and when the systembeomes fully polarised at large �eld values, µ̃mf
0,σ = −σ(U/2 + h), but in general µ̃mf

0,σ >

µ̃0,σ(h). We also ompare the mean �eld (MF) result for the �eld dependene of themagnetisation m(h) with the one obtained in the DMFT alulation in �gure 6.2 (right).The general behaviour is similar, but the mean �eld theory without quantum �utuationsoverestimates the magnetisation, as one would expet.



110 The Hubbard model in magneti �eld6.3.2 Intermediate oupling regimeIn the next plot in �gure 6.3 (left), where U = 5, we show typial behaviour of the majorityspin density of states in the intermediate oupling regime.
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Reχl(0, h) in this regime inreases with h so that ∂χloc(h)/∂h > 0. Suh a feature analso be seen in the urvature of the magnetisation shown in the inset of �gure 6.3 (right).This is behaviour harateristi of a metamagneti transition and related to the magneti�eld indued metal-insulator transition.We an also hek the Luttinger theorem in a magneti �eld (6.14), as disussed in theprevious setion, by omparing the values of ñ0
σ, dedued from integrating the quasipartiledensity of states with the value of nσ alulated from the diret NRG evaluation in the
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ρσ(ω) and, as expeted, does not reprodue the high energy features. These, however, toa fair approximation an be desribed by the mean �eld solution ρmf(ω) weighted with afator 1−zσ as an be seen in �gure 6.5 (left). A ase with a �nite magneti �eld h = 0.15,where the peaks in the density of states of the two spin speies are shifted due to theindued polarisation relative to the Fermi level, is shown in �gure 6.5 (right). The �gurefouses on the region at the Fermi level and one an see the the free quasipartile densityof states desribes well the form of ρσ(ω) in the immediate viinity of the Fermi level.It is to be expeted that the frequeny range for this agreement an be extended if self-energy orretions are inluded in the quasipartile density of states using the renormalisedperturbation theory as shown in hapter 3 in the impurity ase.We now ompare the NRG results for the transverse loal dynami spin suseptibilitiesfor the same value U = 5 and a similar range of magneti �eld values with those based onthe RPT formula as explained at the end of setion 6.2. In �gure 6.6 we show the imaginary
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Figure 6.5: Left: The free quasipartile density of states ρ̃0,σ(ω) in omparison with in-terating loal spetral density for U = 5 and h = 0. We have also plotted a thin blakline for ρmf(ω) = [ρ0(ω + U/2) + ρ0(ω − U/2)]/2 whih desribes the non-magneti mean�eld solution and weighted with 1 − zσ. Right: The free quasipartile density of states inomparison with interating the loal spetral density for U = 5 and h = 0.15.part of the transverse spin suseptibility alulated with the two di�erent methods.
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6.3 Results at Half-�lling 113regime where we get metamagneti behaviour. The shapes of the low energy peaks for bothquantities are well reprodued by the RPT formulae. Note that the peak in the real part isnot at ω = 0, so it is not �xed by the ondition that determines Ũt, but nevertheless is ingood agreement with the NRG results. Due to their very small values it beomes di�ultto alulate zσ(h) as the system approahes loalisation for larger �elds. In this regime as
zσ(h) → 0 the free quasipartile density of states will onverge to a delta-funtion. Self-energy orretions to the free quasipartile propagators will beome inreasing importantas this limit is approahed. One the system has loalised and is ompletely polarised,however, we �nd that the values µ̃σ (zσ(h) = 1) dedued from the self-energy give a quasi-partile density of states oiniding with the DMFT-NRG result of an upper and lowersemi-irular bands.6.3.3 Strong oupling regimeFinally we onsider the strong oupling regime with U > Uc, where for h = 0 the spetraldensity has a Mott-Hubbard gap so that for half-�lling the system is an insulator [seedashed line in �g. 6.7 (right)℄. The eletrons will be loalised with free magneti momentsoupled by an e�etive antiferromagneti exhange J ∼ t2/U as in (1.31). In �elds suhthat h > J , the system polarises ompletely as an be seen in �gure 6.7 (right), where weshow the total density of states ρ(ω) = ρ↑(ω) + ρ↓(ω) for h = 0 and h = 0.2.
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Figure 6.7: Left: Plots of the imaginary part of the transverse dynami spin suseptibilityfor U = 5 and h = 0.19. Right: The total loal spetral density ρ(ω) for U = 6 for h = 0(dashed line), Mott insulator, and h = 0.2 (full line), fully polarised band insulator.For smaller �elds, suh that h < J , we do not �nd a onvergent solution to the DMFTequations, and the iterations osillate between loal states whih are either ompletely fullor empty. We interpret this as due to the tendeny to antiferromagneti order whih in aweak �eld, due to the absene of anisotropy, will be almost perpendiular to the applied�eld in the x-y plane with a slight anting of the spins in the z-diretion (spin �opped



114 The Hubbard model in magneti �eldphase). In this alulation no allowane has been made for this type of ordering, but thisstate an be well desribed using an e�etive Heisenberg model for the loalised moments.6.4 Results away from half �lling6.4.1 Quarter Filled CaseWe now ompare the results in the intermediate oupling regime with U = 5 at half-�llingwith those at quarter �lling, x = 0.5, where the Fermi level falls in the lower Hubbard peakin the spetral density. To see how the band hanges with inreasing magneti �eld weplot the density of states for both spin types in �gure 6.8, for the majority spin eletrons(left) and for the minority spin eletrons (right), for various values of the magneti �eld.
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Figure 6.8: The loal spetral density for the majority spin ρ↑(ω) (left) and for the minorityspin ρ↓(ω) (right) for U = 5, x = 0.5 and various �elds h. The dotted vertial line marksthe position of the Fermi level.In the majority spin ase (left) the lower peak gains spetral weight on the low energyside and the weight in the upper peaks dereases with inrease of the �eld. The oppositefeatures an be seen in the minority spin ase (right), with the spetral weight in the lowerpeak below the Fermi level dereasing and the weight in the upper peak inreasing. Thusthe inrease of spetral weight below the Fermi level for the majority spin eletrons, andthe derease for the minority spin eletrons, an be seen to be due to a hange of bandshape rather than a simple relative shift of the two bands, whih would be the ase inmean �eld theory. In the fully polarised state there are no minority states below the Fermilevel and the upper peak in the majority state density of states has disappeared. Notethat the magneti �eld neessary for polarisation hpol is more than twie as large this ase,
hpol ≃ 0.4, as in the half �lled ase, where hpol ≃ 0.2.The orresponding values for the inverse of the quasipartile weight 1/zσ(h) are shownin �gure 6.9 (left) for a range of �elds.As noted in the impurity ase, the quasipartile weights di�er for the two spin types with
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Figure 6.9: The inverse of the quasipartile weight zσ(h) alulated from the impurity�xed point (FP) and diretly from the self-energy for U = 5, x = 0.5 (left) and for U = 6,
x = 0.95 (right) for various �elds h. The magnetisation m(h) is also displayed.
z↑(h) > z↓(h). The values of zσ(h) have been alulated, as desribed earlier, both fromthe energy levels (RP) and from a numerial derivative of the NRG derived self-energy.There is reasonable agreement between the two sets of results, and the small di�erenesto be seen be attributed to the unertainty due to the broadening in the numerial deriva-tive of the NRG self-energy. As in the impurity ase without partile hole symmetry(Bauer and Hewson 2007a), there is an initial derease of z↓(h) with inrease of h, whereas
z↑(h) inreases monotonially. Note that z↓(h) does not revert to one in the polarised aseas an additional down spin eletrons just above the Fermi level interats with the other uppolarised eletrons. This will be seen even more pronouned in the ase near half �llingdisussed below. The �eld dependene of the magnetisation is also shown in �gure 6.9,and is similar to the half-�lled ase with a weak interation (U = 2). We have alulated,but do not show, the orresponding oupation values for ñ0

σ whih again agree well withthe values of ñσ, verifying Luttinger's theorem.Our onlusion from these results, and from alulations with other values of inter-mediate and large U , is that when there is signi�ant doping, the behaviour in the �eldorresponds to a weakly orrelated Fermi liquid, very similar to that at half-�lling in theweak interation regime. The only remarkable di�erene in the �eld is the spin dependeneof the e�etive masses as shown in �gure 6.9, whih is also found similarly in the impurityase (Bauer and Hewson 2007a).6.4.2 Near half �llingVery lose to half-�lling and for large values of U we have a qualitatively di�erent parameterregime. Here the system is metalli but we an expet strong orrelation e�ets when Uis of the order or greater than Uc, due to the muh redued phase spae for quasipartilesattering. We look at the ase with 5% hole doping from half-�lling and a value U = 6,



116 The Hubbard model in magneti �eldwhih is just greater than the ritial value for the metal-insulator transition. In �gure6.10 we show the spetral density of states for both the majority (left) and minority (right)spins states and various values of the magneti �eld.
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Figure 6.10: The loal spetral density for the majority spin ρ↑(ω) (left) and the minorityspin ρ↓(ω) (right) for U = 6, x = 0.95 and various �elds h.There is a lear sharp quasipartile peak for h = 0 at the Fermi level at the top of thelower Hubbard band. As in the quarter �lling ase with U = 5 we see a similar transferof spetral weight with inreasing �eld to below the Fermi level for the majority spin ase,and above the Fermi level for the minority spins. For large �elds, h > 0.26, when thesystem is ompletely polarised there is still a sharp narrow peak in the spetral densityof the minority spin states (right) above the Fermi level, though the spetrum for themajority states (left) below the Fermi level is that of the non-interating system. A spinup eletron added above the Fermi level feels no interation as the system is ompletelyspin up polarised so these eletrons see the non-interating density of states. On the otherhand a spin down eletron above the Fermi level interats strongly with the sea of up spineletrons. The self-energy due to sattering with partile-hole pairs in the sea reates adistint resonane in the down spin density of states just above the Fermi level. Just suha resonane was predited by Hertz and Edwards (1972) for a Hubbard model in a strongferromagneti (fully polarised) state.The �eld dependene of the inverse of the quasipartile weight is presented in theearlier �gure 6.9 (right). Again we �nd reasonable agreement between the two methodsof alulation for these quantities. The magnetisation as a funtion of h is shown as aninset in the same �gure. The behaviour of z↑(h) and z↓(h) as a funtion of h ontrastssharply with the behaviour found for the metalli state at half-�lling with U = 5 shownin �gure 6.3 (right). Notie omparing with �gure 6.3 that for zero �eld the quasipartileweight has a very similar value in both ases. At half-�lling the tendeny of the magneti�eld to indue loalisation resulted in values of z−1
σ (h) (z↑(h) = z↓(h)) whih inreasesharply as a funtion of h. In the 5% doped ase with U = 6, the system remains metalliand the inverse quasipartiles weights, z−1

↑ (h) and z−1
↓ (h), both derease in large �elds



6.4 Results away from half �lling 117though their values di�er signi�antly. The quasipartile weight for the minority spineletrons dereases initially with inrease of h, whereas that for the majority spins z↑(h)inreases monotonially and quite dramatially with h. For a �eld h = hpol when thesystem beomes fully polarised the up spin eletrons beome essentially non-interating,
z↑(hpol) = 1, whereas there is a strong renormalisation for a down spin eletron and we�nd in this ase z↓(hpol) ≃ 0.15. The interpretation for this is as given in the previousparagraph for the spetral densities. For very large �elds, h ≫ hpol, also the minorityrenormalisation fator z↓(h) tends to one.In �gure 6.11 (left) we ompare the free quasipartile DOS zσρ̃0,σ(ω) with the full one
ρσ(ω) for the fully polarised ase (hpol = 0.26) near half �lling, x = 0.95, U = 6. Note thatthe parameters, µ̃0,σ and zσ , used in ρ̃0,σ(ω) are purely derived from the NRG self-energyin this ase.
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Figure 6.11: Left: The free quasipartile density of states in omparison with interatingloal spetral density for U = 6, x = 0.95 and h = 0.26. Right: The real and imaginaryparts of the transverse dynami spin suseptibility (upper panel) and of the longitudinaldynami spin suseptibility (lower panel) for U = 6, x = 0.95 and h = 0.15.We an see that the di�erent values for the �eld dependent quasipartile weight for up anddown spin zσ(h) lead to remarkably di�erent quasipartile band shapes. With z↑(hpol) ≃ 1the majority spin quasipartile band is essentially that of the non-interating density ofstates. The very muh smaller value z↓(hpol) leads to a narrow quasipartile band abovethe Fermi level. The low energy �ank of this quasipartile band desribes well the narrowpeak seen in the spetral density just above the Fermi level. To desribe these strongasymmetries in the spetral densities near half �lling, we need z↑ ≫ z↓, whih ontrastswith the ases at half �lling suh as in �gures 6.5 (right) where always z↑ = z↓. Thissuggests a disontinuous behaviour of the renormalisation fators zσ as a funtion of dopingon the approah to half �lling.Also for this ase we display results for the real and imaginary part for the transversesuseptibility for a �eld of h = 0.15, shown in �gure 6.11 (right). The low energy featuresare seen on an ω-sale an order of magnitude smaller than that for quarter �lling due to



118 The Hubbard model in magneti �eldthe muh stronger renormalisation e�ets in this regime. There is exellent agreement bothwith the peak positions and shapes between the NRG and RPT results for both quanti-ties. More examples of how the dynami (transverse and longitudinal part) suseptibilityompares to NRG results an be found in referene Bauer and Hewson (2007b).We onlude that already a small doping of the system is enough to maintain a metalliharater even for very strong interation. Although the zero �eld spetra of the half �lledase for U = 5 and the small doping ase with U = 6 display very similar zero �eldbehaviour, i.e. a strongly renormalised quasipartile band with similar zσ, no �eld induedloalisation transition ours for �nite doping and no metamagneti behaviour is observedin the latter ase.To summarise, in this hapter we have used the DMFT-NRG method to alulatethe spetral densities for one-partile and two-partile response funtions for the in�nitedimensional Hubbard model in a magneti �eld, for the qualitatively di�erent �lling regimesand interation strengths. The results extend earlier alulations of Laloux et al. (1994)using the ED method, whih were restrited to the ase of half-�lling. The results areon the whole onsistent with this earlier work, exept in the insulating regime for weak�elds, where we ould not �nd a onvergent solution of the DMFT equations. We havealso extended the method for alulating the �eld dependent quasipartile parameters(hapter 3) to in�nite dimensional lattie models where the self-energy, as in the impurityase, is a funtion of frequeny only. Using the �eld dependent renormalised parameters
zσ(h) and µ̃0,σ(h) in the RPT formulae for the dynami transverse spin suseptibilities wefound agreement with the overall features to be seen in the DMFT-NRG results for thesequantities. In all metalli parameter regimes a spin dependent Luttinger theorem in theform nσ = ñ0

σ, the number of partiles equals the number of quasipartiles, was found tobe satis�ed for all strengths of the magneti �eld.Well away from half �lling we �nd a magneti response similar to the weakly orrelatedase even for large values of U . The large phase spae for quasipartile sattering inthis regime leads to modest renormalisation e�ets. Here, as in the impurity ase, we�nd spin dependent quasipartile weights, z↑(h) 6= z↓(h). This implies spin dependentas well as �eld dependent e�etive masses, whih have been disussed earlier in work bySpaªek and Gopalan (1990), Korbel et al. (1995) and Riseborough (2006). A qualitativeomparison with the results there an be found in Bauer and Hewson (2007b).



Chapter 7Renormalised quasipartiles inmetalli Antiferromagnets

Wie sih Verdienst und Glük verketten,Das fällt den Toren niemals ein,Wenn sie den Stein der Weisen hätten,Der Weise mangelte dem Stein.Johann W. von Goethe

In this hapter we disuss spontaneous antiferromagneti order in the Hubbard model.We fous on the ase away from half �lling. First we disuss the general situation and thephase diagram, before explaining the details neessary for the DMFT-NRG approah. Thisis followed by a detailed analysis of the quasipartile parameters, whih are obtained withtwo di�erent methods. Finally we disuss loal and k-resolved spetral funtions and givea detailed analysis of the renormalised quasipartile exitations inluding their e�etivemass and spetral weight.7.1 Antiferromagneti order in the Hubbard modelIn the last setion we analysed the behaviour of the Hubbard model subjet to a homo-geneous magneti �eld and we saw qualitatively di�erent responses in ertain regimes forthe interation U and the doping δ. We did not �nd a spontaneously broken symmetrystate, i.e. a ferromagneti ordered state, in the parameter spae under onsideration. Amore natural symmetry breaking than the ferromagneti ordering for the Hubbard modelis the antiferromagneti ground state. The easiest way to see this is to onsider large Uand half-�lling, where the model an be mapped to a Heisenberg model of antiferromag-netially oupled spins on a lattie. The spin oupling term was given in equation (1.31)and the oupling onstant is J = 4t2/U . With (1.31) as an e�etive model we an diretlysee the antiferromagneti ordering tendeny in the limit of large U . Also for small values ofthe interation, where mean �eld theory is valid, one �nds an antiferromagneti solution.In fat it is generally aepted at present that for δ = 0 and �nite U the ground state ofthe Hubbard model with a bipartite lattie is antiferromagnetially ordered. The situationan be ompared with the formally analogous situation in a superondutor (f. mappingin setion 1.2.2), where any �nite attration leads to an instability of the Fermi sea. We



120 Renormalised quasipartiles in metalli Antiferromagnetswill deal with this situation in more detail in the next hapter. An extensive study byZitzler et al. (2002) used the DMFT-NRG method to desribe the antiferromagneti so-lutions and phase separation in the Hubbard model. The results presented here are inagreement with these earlier preditions, but this study has a di�erent emphasis as will beexplained below.Antiipating some of the results of this hapter we show a global antiferromagneti/para-magneti phase diagram as a funtion of the doping δ and the on-site interation U in �gure7.1. It has been obtained with DMFT-NRG alulation. The value of the orrespondingsublattie magnetisation mA is shown in a false olour plot. We have added a dashed lineseparating the spontaneously ordered and paramagneti regimes.
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Figure 7.1: Left: Phase diagram showing the doping and the U dependene of the sublattiemagnetisation mA as dedued from the DMFT-NRG alulations. Right: Shemati plotof an antiferromagnetially ordered state with a few additional holes.At half �lling (δ = 0 axis) the spontaneous magnetisation inreases with U . We an see thatthe antiferromagneti order from the half �lled ase persists when holes are added. Thevalue of the ritial doping δc at whih the antiferromagnetism disappears depends on theon-site interation U . We expet that for small U the ritial doping δc will inrease with
U sine a tendeny to order only appears when an on-site interation is present. From themapping to the t−J model we also expet that for large U the antiferromagneti oupling
J dereases and therefore the order is destroyed more easily. The values of U are, however,not large enough to display this trend.If we ompare these results with the phase diagram given by Zitzler et al. (2002) wesee that they are in very good agreement. In their ase the antiferromagneti region wasmapped out to values of U ≃ 4.5. A piture illustrating the antiferromagneti lattie in aNéel state (arrows symbolise eletrons with ertain spin diretion) and some added holesis shown in �gure 7.1 (right). It is a two-dimensional 5 × 5 luster with 4 holes, hene
δ = 0.16 whih orresponds to the maximal values we have found for the ritial doping δc.The piture is reminisent of numerous numerial studies for luster of this size with exatdiagonalisation and Quantum Monte Carlo (for a review see Dagotto (1994) and referenes



7.2 General setup and DMFT approah 121therein).Here in this hapter, we fous on the metalli antiferromagnetism, the doped state withlong range antiferromagneti order. Our interest is to examine how well the low energyexitations in this ordered state an be desribed in terms of renormalised quasipartiles.Sine the motion of a hole in an antiferromagneti lattie is aompanied with the gen-eration of spin exitations [see shemati piture in �gure 7.1 (right)℄ its mobility will beinhibited and the e�etive mass enhaned. Due to a similar e�et for harge arrier ou-pling to lattie phonons with the orresponding quasipartile exitations alled polarons,the quasipartile exitations are sometimes referred to as magneti polarons. Here, we willmainly refer to them with the generi term of renormalised quasipartiles. To takle thisproblem of studying the nature of this renormalised quasipartile exitations in the systemwith spontaneous antiferromagneti symmetry breaking, we use the in�nite dimensionalHubbard model and the DMFT-NRG approah.7.2 General setup and DMFT approahIn onsidering the response of the Hubbard model (1.29) to a staggered magneti �eldand antiferromagneti order, we take the ase of a bipartite lattie, whih onsists of twosublatties A and B suh that the nearest neighbours of a site in the A sublattie are onthe B sublattie and vie versa. The Hamiltonian for the Hubbard model an be writtenin the form,
Hµ = −

∑

i,j,σ

(tijc
†
A,i,σcB,j,σ + h.c.) −

∑

i,σ

(µσc
†
A,i,σcA,i,σ + µ−σc

†
B,i,σcB,i,σ) + U

∑

i,α

nα,i,↑nα,i,↓(7.1)where the hopping matrix element is taken as tij = t between nearest sites i and j only,and zero otherwise, and α = A,B. A staggered �eld H i
s

H i
s =

{

H for i ∈ A sublattice

−H for i ∈ B sublattice
(7.2)has been inluded so that µσ = µ+ σh. The non-interating part of the Hamiltonian H0,µan be diagonalised in terms of Bloh states and then expressed in the form,

H0,µ =
∑

k,σ

C†
k,σMk,σCk,σ. (7.3)where C†

k,σ = (c†A,k,σ, c
†
B,k,σ), and the matrix Mk,σ is given by

Mk,σ =

(

−µσ εk

εk −µ−σ

)

. (7.4)The k sums run over a redued Brillouin zone as we have doubled the Wigner-Seitz ellin position spae inluding two lattie sites. The free Green's funtion matrix G0
k,σ(ω) is



122 Renormalised quasipartiles in metalli Antiferromagnetsgiven by (ω −Mk,σ)−1. The poles of the free Green's funtion give the elementary singlepartile exitations, whih are given by
E0

k,±(U = 0) = −µ0(h) ±
√

h2 + ε2k, (7.5)where µ0(h) is the hemial potential of the noninterating system in a staggered �eld.This illustrates that the eletroni exitations are split into two sub-bands for a �nitestaggered �eld.Notie that we have adopted a speial hoie of basis {cA,k,σ, cB,k,σ} here (Georges et al.1996, Zitzler et al. 2002). Another ommon basis to study antiferromagneti and spin den-sity wave symmetry (SDW) breaking is {ck,σ, ck+q0,σ}, where q0 is the reiproal lattievetor for ommensurate SDW ordering. The bases an be related by a linear transforma-tion,
(

ck,σ

ck+q0,σ

)

=
1√
2

(

1 −1

1 1

)(

cA,k,σ

cB,k,σ

)

. (7.6)For the latter basis the matrix Mk,σ would be diagonal in the kineti energy term andthe symmetry breaking is o�diagonal. For our study in the DMFT framework the A−B-sublattie basis is, however, more onvenient and we will use it throughout the rest of thishapter. It is possible, of ourse, to relate the quantities obtained with the help of (7.6) tothe {ck,σ, ck+q0,σ} basis.We an generalise the equations to the interating problem by introduing a self-energy
Σα,k,σ(ω), so that the matrix Green's funtion an be written in the form

Gk,σ(ω)=
1

ζA,k,σ(ω)ζB,k,σ(ω) − ε2k

(

ζB,k,σ(ω) −εk
−εk ζA,k,σ(ω)

)

, (7.7)where ζα,k,σ(ω) = ω + µσ − Σα,k,σ(ω). As we are dealing with the in�nite dimensionallimit of the model, we take the self-energy to be loal so we an drop the k index. Thisis the reason why the self-energy has a single site index α = A,B and no o�diagonalterms appear in equation (7.7). The symmetry of the bipartite lattie gives ΣB,σ(ω) =

ΣA,−σ(ω) ≡ Σ−σ(ω) and hene
ζB,−σ(ω) = ζA,σ(ω) ≡ ζσ(ω),where we have simpli�ed the notation. To determine these quantities Σσ(ω) it is su�ientto fous on the A sublattie only. Summing the �rst omponent in the Green's funtion inequation (7.7) over k we obtain the Green's funtion for a site on the A sublattie, Gloc

σ (ω),
Gloc

σ (ω) =
ζ−σ(ω)

√

ζσ(ω)ζ−σ(ω)

∫

dε
ρ0(ε)

√

ζσ(ω)ζ−σ(ω) − ε
, (7.8)where ρ0(ε) is the density of states of the non-interating system in the absene of thestaggered �eld.



7.2 General setup and DMFT approah 123In the DMFT this loal Green's funtion, and the self-energy Σσ(ω), are identi�edwith the orresponding quantities for an e�etive impurity model. This implies that theGreen's funtion G0,σ(ω) for the e�etive impurity in the absene of an interation at theimpurity site is given by the same self-onsisteny equation (6.3) as in the last hapter.The iterative sheme to �nd self-onsistent solution an be arried out in the same way asdesribed there, we only need to take into aount the di�erent form of the loal Green'sfuntion (7.8).To �nd antiferromagneti solutions, we alulated self-onsistent solutions for a de-reasing sequene of staggered magneti �elds to see if broken symmetry solutions of thistype exist as the staggered �eld is redued to zero. For the non-interating density ofstates ρ0(ε) we take the Gaussian form ρ0(ε) = e−(ε/t∗)2/
√
πt∗, orresponding to an in�-nite dimensional hyperubi lattie. It is useful to de�ne an e�etive bandwidth W = 2Dfor this density of states via D, the point at whih ρ0(D) = ρ0(0)/e

2, giving D =
√

2t∗orresponding to the hoie in referene Bulla (1999). In all the results we present herewe take the value W = 4. In the NRG alulations we have used the improved method ofevaluating the response funtions with the omplete Anders-Shiller basis, and also deter-mine the self-energy from a higher order Green's funtion. The staggered magneti �eldindues a sublattie magnetisation,
mA =

1

2
(nA,↑ − nA,↓), (7.9)and the spetra for both spin omponents di�er. For ertain parameters, this di�erenepersists as the staggered �eld is redued to zero so that one has a spontaneous sublattiemagnetisation orresponding to spontaneous antiferromagneti order. For the ase awayfrom half �lling, δ 6= 0, we have to keep adjusting the hemial potential when iteratingfor a self-onsistent solution. It shows a slightly osillatory behaviour when iterating for aspei� �lling x, and we follow the proedure of stabilising the alulations by averagingthe e�etive medium over a number of iterations as desribed in referene Zitzler et al.(2002). This feature is related to the fat that the alulations are for a metastableground state and instabilities to more ompliated ground states for antiferromagnetiordering than the homogeneous, ommensurate Néel state, whih forms the basis for theseDMFT alulations, an our (Shraiman and Siggia 1989, Kato et al. 1990, Emery et al.1990, van Dongen 1995, 1996, Shulz 1990, Freeriks and Jarrell 1995, Emery et al. 1999,Zitzler et al. 2002). As far as phase separation in the ground state is onerned, the resultsof our alulations are generally in line with the onlusions in Zitzler et al. (2002) as theyare arried out within the same framework. The fous of this work is, however, the analy-sis of generi quasipartile properties in a doped antiferromagneti state. We onsider theapproah as a valid, approximate starting point for this endeavour, but modi�ations tothe results presented here an our for alulations based on a more ompliated groundstates not aessible within the DMFT framework. For a more extensive disussion of theappliability of the DMFT in this situation we refer to the earlier work (Zitzler et al. 2002).



124 Renormalised quasipartiles in metalli Antiferromagnets7.3 Quasipartile analysisTo examine the nature of the low energy exitations, we will assume that the self-energy
Σσ(ω) is non-singular at ω = 0 so that, at least asymptotially, it an be expanded inpowers of ω. This assumption is not expeted to be valid lose to the quantum ritialpoint when the magneti order sets in, but to be a reasonable assumption otherwise. Wealso assume that the imaginary part of the self-energy vanishes whih is on�rmed by thenumerial results of the DMFT-NRG alulations. We will retain terms to order ω onlyfor the moment. The higher order orretions will be onsidered later. We then �nd for
ζσ(ω),

ζσ(ω) = ω(1 − Σ′
σ(0)) + µσ − Σσ(0) (7.10)

= z−1
σ (ω + µ̃0,σ), (7.11)where

µ̃0,σ = zσ(µ− Σσ(0)), and z−1
σ = 1 − Σ′

σ(0). (7.12)The interating Green's funtion (7.7) has poles at the roots of the quadrati equation,
ζσ(ω)ζ−σ(ω) − ε2k = 0. (7.13)The solutions of this equation are

E0
k,± = −µ̃±

√

ε̃2
k

+ ∆µ̃2, (7.14)where ε̃k =
√
z↑z↓εk, ∆µ̃ = (µ̃0,↑ − µ̃0,↓)/2, and µ̃ = (µ̃0,↑ + µ̃0,↓)/2. This has thesame form as for the non-interating system in a staggered �eld (7.5), so we an interpretthese exitations as quasipartiles oupled to an e�etive staggered magneti �eld h̃s =

∆µ̃/gµB, with µ̃ playing the role of a quasipartile hemial potential. This equationgives the dispersion relation for these single partile exitations, whih an be regarded asonstituting a renormalised band, or bands as there are two branhes. The term magnetipolaron is sometimes used to desribe these single partile exitations in states of magnetiorder, beause of the analogy with the motion of a partile in a lattie to whih it is stronglyoupled, where the exitation is termed a polaron.The orresponding density of states of these free quasipartiles on the sublattie is
ρ̃0,σ(ω)=

1
√
z↑z↓

√

ω + µ̃− σ∆µ̃

ω + µ̃+ σ∆µ̃
ρ0

(

√

(ω + µ̃)2 − ∆µ̃2

√
z↑z↓

)

, (7.15)for |ω + µ̃| > |∆µ̃|, and is zero otherwise. In the ase of a half-�lled band µ̃ = 0 and thereis a gap at the Fermi level εF = 0.To determine this quasipartile density of states in the presene of the symmetry break-ing staggered magneti �eld we need to alulate zσ and µ̃0,σ for eah spin type. Using the



7.3 Quasipartile analysis 125NRG we an do this in two ways. As the DMFT-NRG alulations give us the self-energy
Σσ(ω) diretly, we only need its value, and that of its �rst derivative at ω = 0, to dedueboth zσ and µ̃0,σ using equation (7.12). However, beause the model is solved using ane�etive impurity model, we an also dedue these quantities indiretly from the many-body energy levels of the impurity on approahing the low energy �xed point, as was donein the last hapter and is desribed in appendix B. This seond method gives us not onlya hek on the results of the diret method, but also allows to dedue some informationabout the quasipartile interations Ũ .7.3.1 Quasipartile weightWe �rst onsider the values of the loal quasipartile weight fator zσ , ommonly knownalso as the wavefuntion renormalisation fator. This is an important fator in determiningthe parameters needed to desribe the low energy behaviour of the system. When thereis no k-dependene of the self-energy, as is the ase for in�nite dimensional models andDMFT, the e�etive mass of the quasipartiles in the paramagneti state is proportional to
1/zσ . We show later that in the antiferromagneti state the expression is more ompliatedand depends both on zσ and the renormalised hemial potential µ̃0,σ. We have determinedthis quantity from the NRG results by the two methods desribed and give the values of
zσ dedued for both spin types as a funtion of doping in �gure 7.2. The results are forthe ase U = 3 (left) and U = 6 (right), where there is antiferromagneti order and theexternal staggered �eld has been set to zero.
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Figure 7.2: The quasipartile weight zσ as dedued diretly from the self-energy and alsofrom the impurity �xed point (FP) for U = 3 (left) and U = 6 (right) for various dopings.It an be seen that there is a reasonable agreement between the values obtained by thetwo di�erent methods of alulation. For the half �lled ase δ = 0, the system has a gapand there is no unique value for the Fermi energy. We have in this ase taken values zσonly from the derivative of the self-energy at ω = 0. Here due to partile-hole symmetry
z↑ = z↓. When the system is doped but still ordered, however, z↑ 6= z↓, and the loal



126 Renormalised quasipartiles in metalli Antiferromagnetsquasipartile weights have smaller values espeially the minority (down) spin partiles onthe sublattie. This is similar to the results we found for a doped Hubbard model in aparamagneti state in the presene of a strong uniform magneti �eld in the last hapter.For ertain range of dopings the values of z↑ and z↓ do not vary muh. The tendeny isthat z↓ �rst dereases and later inreases, whereas z↑ dereases over the whole range untilboth of them merge at the doping point where the antiferromagneti order disappears. Onthe whole the behaviour for U = 6 is quite similar to that for the ase U = 3, only thatthe values of the loal quasipartile weights are further redued.7.3.2 Renormalised hemial potentialIn �gure 7.3 we give the results for the renormalised hemial potential, µ̃0,σ [de�ned inequation (7.12)℄, for the two spin types in the spontaneously ordered antiferromagnetistates for U = 3 (left) and U = 6 (right) for a range of dopings.
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Figure 7.3: The renormalised hemial potential µ̃0,σ as dedued diretly from the self-energy and from the impurity �xed point (FP) for various dopings for U = 3 (left) and
U = 6 (right).The values alulated by the two di�erent methods an be seen to be in good agreementhere, as well. We have added the values for the half �lled ase. These were alulatedfrom the self-energy in the gap at ω = 0. We an see that the value for renormalisedhemial potential for the majority spin, µ̃0,↑, drops from a �nite value at half �lling tosmall negative value when the system is doped. This orresponds to the fat that thehemial potential for the hole doped system falls into the lower band and will be seen inmore detail later. The general behaviour of the values for µ̃0,σ for the ase with U = 6 isvery similar to the ase with smaller U , with again good agreement between the two setsdetermined by the di�erent methods.The renormalised hemial potential µ̃0,σ is an important parameter in speifying theform of the sublattie quasipartile spetral density ρ̃0

σ(ω). From equation (7.15) it an be



7.3 Quasipartile analysis 127seen that, as ω → −µ̃0,σ, ρ̃0,σ(ω) behaves asymptotially as
ρ̃0,σ(ω) ∼ 1

√

ω + µ̃0,σ

, (7.16)so the quasipartile density of states has a square root singularity at ω = −µ̃0,σ. On theother hand, however, as ω → −µ̃0,−σ, ρ̃0,σ(ω) behaves as
ρ̃0,σ(ω) ∼

√

ω + µ̃0,−σ, (7.17)so the quasipartile density of states goes to zero at ω = −µ̃0,−σ. Between the two points,
ω = −µ̃0,σ and ω = −µ̃0,−σ, the quasipartile density of states has a gap of magnitude
2∆µ̃. As an be seen in �gure 7.3 this free quasipartile gap dereases with the doping andloses in the paramagneti state. If we take into aount the values at half �lling we seea strong redution of 2∆µ̃, when doping the system. We also see that µ̃0,↑ drops to smallnegative values for �nite hole doping, whih orresponds to the fat that the Fermi levelthen lies within the lower band. These features will be seen learly in the �gures presentedin the next setion, where we ompare the quasipartile densities of states with the fullloal spetral densities alulated from the DMFT-NRG.7.3.3 The quasipartile interationWhen two or more quasipartiles are exited from the interating ground state, there is aninteration between them. For the Anderson impurity model this interation is loal andan be expressed as Ũ , a renormalised value of the original interation of the `bare' partiles.The value of Ũ an be dedued by looking at lowest lying two-partile exitations derivedfrom NRG alulation as desribed in the appendix B in detail. In �gure 7.4 (left) we givethe values of Ũ↑,↓

pp (N), Ũ↓,↑
hh (N) and Ũ↑,↑

ph (N) as dedued from DMFT-NRG alulation forthe Hubbard model in an antiferromagneti state with U = 6, 10% doping and Λ = 1.8.It an be seen that the three sets of results settle down to ommon value Ũ .Hene, we an go further and identify Ũ with the loal quasipartile 4-vertex interationfor the e�etive impurity model as in equation (2.37), where Γ↑,↓,↓,↑(ω1, ω2, ω3, ω4) is thetotal 4-vertex at the impurity site, whih is equal to the same quantity for a site in thelattie model. With this interpretation it is possible to identify these parameters withthose used in a renormalised perturbation expansion.In �gure 7.4 (right) we plot the doping dependene of the renormalised interation overa range of dopings and U = 3 and U = 6. We an see that in both ases the valuesderease with inreasing doping. Hene, the e�etive quasipartile interation is strongerfor a smaller hole density. For a ertain range of dopings Ũ does, however, not vary muh.We an also see that the ratio Ũ/U for the e�etive interation assume smaller values thelarger the bare U beomes. Also the absolute value of Ũ , i.e. without the saling with Uas in �gure 7.4, is smaller for larger bare U for the full range of dopings. We will see in thenext setion that the fat that for larger bare U the quasipartile interations is smallerleads to sharper quasipartile peaks in the strong oupling ase.
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Figure 7.4: Left: The N -dependene of the renormalised partile-partile, partile-hole andhole-hole interations for U = 6 and x = 0.9, showing that they onverge to a unique value
Ũ . Right: The renormalised quasipartile interation Ũ/U as dedued from the impurity�xed point for various dopings and U = 3, 6.7.4 Spetra7.4.1 Loal SpetraThe sublattie quasipartile density of states ρ̃0,σ(ω), evaluated from equation (7.15) withthe renormalised parameters, desribes the low energy features seen in the loal spetraldensity ρσ(ω) alulated from the DMFT-NRG (Bauer and Hewson 2007). At half �llingthere is a gap at the Fermi level, so there are no single partile exitations in the immediateneighbourhood of the Fermi level, and this is not a very interesting ase to onsider. Butfor �nite hole doping the Fermi level lies at the top of the lower band. We look in detailat the ase of 10% doping where the Fermi level lies at the top of the lower band, andonsider the ase U = 3. In the upper panel of �gure 7.5 we ompare the spetral density
ρ↑(ω) with the orresponding quantity z↑ρ̃0,↑(ω), from the quasipartile density of states.The behaviour near the Fermi level (ω = 0), and the singular feature seen in the lowerbranh of ρ↑(ω), are well reprodued by the quasipartile density of states. Above theFermi level there is a peak in the quasipartile density of states similar to that in the fullspetrum but somewhat more pronouned. Above the Fermi level and below the upperpeak there is a pseudo-gap region. In the free quasipartile spetrum it is a de�nite gap.In the spetrum alulated from the diret NRG evaluation it appears as a pseudo-gap,with rather small spetral weight just above the Fermi level. From the diret DMFT-NRGalulations, due to the broadening features introdued to obtain a ontinuous spetrum, itis not always possible to say de�nitively whether there is a true gap above the Fermi levelor not. To resolve this question we an appeal to the renormalised perturbation theory tolook at the orretions to the quasipartile density of states arising from the quasipartile
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ωFigure 7.5: The free quasipartile spetrum (dashed line) in omparison with DMFT-NRGspetrum for x = 0.9 and U = 3 for the spin-up eletrons (majority, upper panel) andspin-down eletrons (minority, lower panel).interations. A alulation of the imaginary part of the renormalised self-energy Σ̃σ(ω)to order Ũ2 is su�ient to settle this issue. One �nds that there is a small, but �niteimaginary part of the self-energy in the free quasipartile gap 2∆µ̃, when it lies above theFermi level, giving rise to a �nite spetral weight there. However, this spetral weight isvery small lose to the lower edge of the free quasipartile density of states, when this edgelies only just above the Fermi level (Bauer and Hewson 2007).7.4.2 k -resolved SpetraWe an learn more about the low energy single partile exitations by looking at the spetraldensity of the Green's funtion Gk,σ(ω) in equation (7.7) for a given wave-vetor k. Withthe self-energies Σσ(ω) alulated within the DMFT-NRG approah all elements of thismatrix an be evaluated. The loal spetra and self-energies are spin-dependent in thedoped broken symmetry state, however, the free quasipartile bands E0
k,± [equation (7.14)℄do not depend on the spin. Here, we fous on the diagonal part of Gk,σ(ω) orrespondingto the A sublattie,

Gk,σ(ω) =
ζ−σ(ω)

ζσ(ω)ζ−σ(ω) − ε2k
. (7.18)The weights of the quasipartile exitations in this ase depend on the spin orrespondingto the sublattie properties. We note that one an also analyse the quasipartile bandsdi�erently, for instane, from the k-resolved spetra and the diagonal form of Gk,σ(ω).The form of the quasipartile bands remains unhanged then, but the weights di�er anddo not depend on the spin σ in that ase.We �rst of all look at the Fermi surfae whih is the lous of the k-points at the Fermilevel (ω = 0) where the Green's funtion has poles. The ondution eletron energy εkF

at



130 Renormalised quasipartiles in metalli Antiferromagnetsthese point is given by
ε2kF

= (µ↑ − Σ↑(0))(µ↓ − Σ↓(0)). (7.19)By Luttinger's theorem, the volume of the Fermi surfae for the interating system mustequal that of the non-interating system with the same density. As the self-energy dependsonly on ω, the two Fermi surfaes must also have the same shape, and therefore must beidential. The Fermi surfae of the non-interating system is given by εkF
= µ0, where µ0is the hemial potential of the non-interating system in the absene of any applied �eldfor the given density. For this to be idential with that given in equation (7.19),

(µ↑ − Σ↑(0))(µ↓ − Σ↓(0)) = µ2
0. (7.20)We an hek that this relation indeed holds from our results for Σσ(ω) and µσ, independentof the value of U , or in the ase of an applied staggered �eld, independent of the �eld value.This relation implies that the total number of eletrons per site n an be alulated froman integral over the non-interating density of states,

n = 2

µ0
∫

−∞

ρ0(ω)dω, (7.21)where in the hole doped ase µ0 = −√
µ̄↑µ̄↓ and µ̄σ = µσ − Σσ(0).To relate this result to the quasipartile piture, we expand the self-energy in equation(7.18) to �rst order in ω, but retain the remainder term. The Green's funtion an berewritten in the form,

G̃k,σ(ω) =
ζ̃−σ(ω)

ζ̃σ(ω)ζ̃−σ(ω) − ε̃2
k

, (7.22)where ζ̃σ(ω) = ω + µ̃0,σ − Σ̃σ(ω). We de�ne a quasipartile Green's funtion G̃k,σ(ω)via zσG̃k,σ(ω) = Gk,σ(ω). The renormalised self-energy vanishes, Σ̃σ(ω) = 0, for thefree quasipartile Green's funtion G̃(0)
k,σ(ω), whih an be separated into two independentbranhes of free quasipartiles,

G̃
(0)
k,σ(ω) =

uσ
+(εk)

ω − E0
k,+

+
uσ
−(εk)

ω − E0
k,−

, (7.23)where E0
k,± was de�ned in equation (7.14) and the weights are given by

uσ
±(εk) =

1

2



1 ∓ σ
∆µ̃

√

∆µ̃2 + ε̃2k



 . (7.24)This is similar in form to mean �eld theory, whih would orrespond to putting zσ = 1, and
∆µ̃ = Ummf , where mmf is the mean �eld sublattie magnetisation. The spin dependentontribution in (7.24) whih arises from the seond term is most marked in the region near



7.4 Spetra 131the Fermi level. It should be noted that the quasipartile exitations E0
k,± and weights

uσ
±(εk) here are de�ned by expanding the self-energy at ω = 0. This is so that theyorrespond to the free quasipartiles in the renormalised perturbation theory whih havean in�nite lifetime.The spetral density ρ̃(0)

k (ω) for this free quasipartile Green's funtion is a set of delta-funtions,
ρ̃
(0)
k,σ(ω) = uσ

+(εk)δ(ω − E0
k,+) + uσ

−(εk)δ(ω − E0
k,−). (7.25)On the Fermi surfae E0

k,− = 0, whih is onsistent with the result for the Fermi surfaegiven in equation (7.19). Summing over k gives the loal quasipartile density of states inequation (7.15). We de�ne the quasipartile number ñ as the integral of the sum of thespin up and spin down quasipartile density of states up to the Fermi level,
ñ =

2
√
z↑z↓

0
∫

−∞

dω(ω + µ̃)
√

(ω + µ̃)2 − ∆µ̃2
ρ0

(

√

(ω + µ̃)2 − ∆µ̃2

√
z↑z↓

)

. (7.26)If we hange the variable of integration to ω′, where ω′√z↑z↓ =
√

(ω + µ̃)2 − ∆µ̃2, theintegration an be shown to be idential with that in equation (7.21), using the fat that
µ0 = −√

µ̄↑µ̄↓. We then have an alternative statement of Luttinger's theorem in the form
ñ = n. This an also be found by summing both spin omponents in (7.25), integratingover ω and then onverting the k-summation to an integral over the free eletron densityof states ρ0(ω). We an hek in our numerial results that the relation in this form holds.The oupation number n an be alulated both from a diret evaluation of the numberoperator in the ground state, and also by integrating the sum of the spetral densities
ρσ(ω) of the full loal Green's funtion to the Fermi level. The value of ñ is similarlydetermined from the integral over the total quasipartile density of states, ρ̃σ(ω). All threeresults were found to be in good agreement, to within one or two perent deviation at themost.Before disussing the k-resolved spetra in detail we would like to ask what the spetralweight wqp of a quasipartile exitation at the Fermi level in the lower band is,

Gqp(ω) =
wqp

ω − E0
kF,−

. (7.27)For this we an not fous on the spin dependent sublattie quantities, but have to sumover both sublatties or equivalently the two spin omponents. The reason for this is thatthe antiferromagnetially ordered state does not possess any net magnetisation and has onaverage as many spin up polarised as spin down eletrons. The division in the A and Bsublatties is onvenient for the DMFT alulations but somewhat arti�ial. In our asewith hole doping the Fermi level lies within the lower band, whih for the free quasipartilesis denoted by E0
k,−. The orresponding weight on the Fermi surfae de�ned by (7.19) isthen given by

wqp =
∑

σ

zσu
σ
−(εkF

) =
z↑ + z↓

2
+

(z↑ − z↓)∆µ̃

2|µ̃| , (7.28)



132 Renormalised quasipartiles in metalli Antiferromagnetswhere the average of the renormalised hemial potential µ̃ and the di�erene ∆µ̃ werede�ned below equation (7.14). From the de�nition of ∆µ̃ we see that the seond termin (7.28) is spin rotation invariant. The spetral quasipartile weight wqp on the Fermisurfae depends not only on the renormalisation fators zσ, but also on the renormalisedhemial potentials µ̃0,σ. The same result for the weight (7.28) an be obtained from thediagonal form of Gk,σ(ω) and the spetral weight of the lower band. The weight wqporresponds to the spetral weight Z at the Fermi level as for example given in referenesDagotto (1994), Sangiovanni et al. (2006b,a). The �rst term of the result for wqp is likethe arithmeti average of zσ. From �gure 7.2 we an see that z↑ > z↓ and from �gure 7.3that µ̃0,↓ < µ̃0,↑ < 0. Therefore the seond term in (7.28) gives a positive ontributionto the spetral weight. At the end of the hapter in �gure 7.10 we show values of wqp inomparison with the arithmeti average of zσ.In order to understand better the properties of the quasipartile bands, we now om-pare the quasipartile spetrum with the k-resolved spetral density ρk,σ(ω) derived fromthe DMFT-NRG results. In �gure 7.6 we make a omparison for the ase of 12.5% dop-ing with U = 3 for the Green's funtion Gk,σ(ω) given in equation (7.18), ρk,σ(ω) =

−ImGk,σ(ω+)/π, where ω+ = ω + iη, with η → 0, with that derived for the free quasipar-tiles, zσρ̃(0)
k,σ(ω) from equation (7.25).
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Figure 7.6: The spetral density ρk,σ(ω) for the spin-up eletrons (upper panel) and spin-down (lower panel) plotted as a funtion of ω and a sequene of values of εk for U = 3and 12.5% doping. Also shown with arrows are the positions of the free quasipartileexitations, with the height of the arrow indiating the orresponding weight.The delta-funtions of the free quasipartile results are indiated by arrows with the heightof the arrow indiating the value of the orresponding spetral weight. The plots as afuntion of ω are shown for a sequene values of εk and, where the peaks in ρk,σ(ω) getvery narrow and high in the viinity of the Fermi level, they have been trunated. Itan be seen that the free quasipartile results give a reasonable piture of the form of
ρk,σ(ω), partiularly in the immediate region of the Fermi level. There is onsiderable



7.4 Spetra 133variation along the urves in the way the overall spetral weight is distributed between theexitations below and above the pseudo-gap as a funtion of εk. This is most marked inthe region near the Fermi level for the spin-up eletrons where most of the spetral weightis in the lower band and it is muh redued in the upper band, whereas the opposite isthe ase for the spin-down eletrons. This is re�eted in the analyti form of the weights
uσ
±(εk), equation (7.24). For instane, the majority spin weight u↑−(εk) for the lower band
E0

k,− beomes maximal near the Fermi energy, whereas u↑+(εk) goes to zero there. The�nite width of the quasipartile peaks in ρk,σ(ω) an be desribed by a RPT, when we takeinto aount the renormalised self-energy Σ̃σ(ω) in equation (7.22). If we, for instane, usethe seond order approximation in Ũ , whih was mentioned in the last setion, we get asimilar behaviour for small ω as seen for ρk,σ(ω) in �gure 7.6.From the positions of the peaks in the ρk,σ(ω) spetra we an dedue two branhes ofan e�etive dispersion Ek,± for single partile exitations and ompare it with the ones forthe free quasipartiles E0
k,±. We give the results for U = 3 in �gure 7.7.
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Figure 7.7: A plot of the peaks in the spetral density ρk,σ(ω) (full line) as a funtion of εkfor U = 3 (left) and U = 6 (right) and 12.5% doping ompared with the free quasipartiledispersion E0
k (dashed line). For U = 6 on the range shown the lower band Ek,− ompletelyoinides with the free quasipartile band E0

k,−It an be seen that E0
k,− traks the peak in the lower band losely over a wide range of

εk, −1.5 < εk < 1.5 (note the bandwidth W = 4). This is not the ase in the upperband, where E0
k,+ traks the peak losely only in the lowest setion that lies losest to theFermi level. As one an see from the dotted line the Fermi level lies in the lower band andintersets the lower band twie. This orresponds to the two values with opposite sign ε±kFas an be see from equation (7.19).The orresponding results for k resolved spetra for U = 6 and also 12.5% dopingare shown in �gure 7.8. In order to ompare well with the ase U = 3 we have hosenan idential range for ω and εk, although the large spetral peaks near the energy arevery lose together in this presentation. It an be seen that the overall features are verysimilar to those seen for U = 3. For the spin up spetrum (upper panel) the peaks for
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Figure 7.8: The spetral density ρk,σ(ω) for the spin-up eletrons (upper panel) and spin-down (lower panel) plotted as a funtion of ω and a sequene of values of εk for U = 6and 12.5% doping. Also shown with arrows are the positions of the free quasipartileexitations, with the height of the arrow indiating the orresponding weight.the lower band have most of the weight near the Fermi energy, whereas the upper bandis suppressed there, and vie versa for the opposite spin diretion. The lower bands aretraked well by the free quasipartiles, and we an see that the bands for the larger value of
U are signi�antly �atter. This is also learly visible in �gure 7.7 (right), where we againompare the quasipartile band with the peak position of the full spetra. On the rangeshown the lower band Ek,− ompletely oinides with the free quasipartile band E0

k,−.From the k-resolved spetra in �gures 7.6 and 7.8 we an also extrat the width of thequasipartile peak ∆qp in the spetral density ρk,σ(ω). Its inverse 1/∆qp gives a measureof the quasipartile lifetime. The results for ∆qp for the lower band Ek,− for the two ases
U = 3, 6 and 12.5% doping are shown in �gure 7.9 as funtion of εk. This plot brings outmore learly the feature that an be seen already in �gures 7.6 and 7.8 (upper panel) thatthe width inreases sharply when we move away from the Fermi level and the values forthe width ∆qp for U = 6 are signi�antly smaller than those for U = 3. This is in linewith the fat that the loal quasipartile interation Ũ is smaller for the larger value ofthe bare interation U as ommented on earlier. The free quasipartile piture is thereforeeven more appropriate in the ase with stronger interation. To numerial auray thewidth vanishes at ε±kF

and is �nite for the interval ε−kF
< εk < ε+kF

whih lies within thelower band but above the Fermi level.Another quasipartile property that an be extrated from our alulations is the en-hanement of the e�etive mass m∗/m. In a Fermi liquid it is reasonable to de�ne m∗/mas the ratio of the linear expansion oe�ients of the non-interating and interating dis-persion relation evaluated on the Fermi surfae (7.19) 1. If we use the free quasipartile1In DMFT the Fermi surfae of the non-interating and interating system have the same form and wedo not need to speify the k-vetor for the e�etive mass.
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Figure 7.9: Left: A plot of the width of the peaks ∆qp in the spetral density ρk,σ(ω) as afuntion of εk for U = 3 (dashed line) and U = 6 (full line) and 12.5% doping. Right: Theratio m∗/m plotted over a range of t2/U for 7.5% doping. For the bare band bandwidth
W = 4 we have t =

√
2 here.form E0

k,− from equation (7.14) for the interating ase, this yields
m∗

m
=

|∇kεk|
|∇kE

0
k,−|

∣

∣

∣

∣

∣

kF

=
1

√
z↑z↓

|µ̃|
√

µ̃0,↑µ̃0,↓

. (7.29)The e�etive mass enhanement therefore does not only depend on zσ, but also on therenormalised hemial potentials µ̃0,σ. The general trend for m∗/m alulated from (7.29)as funtion of t2/U an be seen in �gure 7.9 (right) for the ase of 7.5% doping. Thee�etive mass inreases strongly for large U as the hole motion is energetially more ostlyin the ordered bakground. The fat that the lower band for U = 6 seen in �gure 7.7(right) is �atter than in the ase U = 3 in �gure 7.7 (left) an be learly attributedto the larger e�etive mass. We �nd a similar behaviour for m∗/m as funtion of Ufor di�erent �lling fators from the ones shown in �gure 7.9 (right). The trend is thatthe e�etive mass enhanement is less pronouned for larger doping, whih is intuitivelyunderstandable by the quasipartile motion in an ordered bakground. In the DMFTframework for the paramagneti state as well as the ase with homogenous magneti �eld,the quasipartile spetral weight wqp and the inverse of the e�etive mass enhanement
m/m∗ an be desribed simply by the renormalisation fator zσ. In �gure 7.10 we omparethe spetral quasipartile weight wqp (7.28) the arithmeti, (z↑ + z↓)/2, and geometri,
√
z↑z↓, average of the renormalisation fators, and the inverse of the e�etive mass, m/m∗,from equation (7.29) for U = 3 for various dopings.As seen in this ase with antiferromagneti symmetry breaking these quantities take adi�erent form (7.28) and (7.29) and have distint values. As a �rst approximation thequasipartile spetral weight wqp orresponds to the arithmeti average of the renormal-isation fators zσ , whilst m/m∗ relates to the geometri average. In general, one an,
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Chapter 8The attrative Hubbard model
Παντα ρεi.Heralitus, 500 BC

In this �nal hapter we present results of a preliminary study of the attrative Hubbardmodel within the DMFT-NRG approah. First we disuss the relevane of the model andin whih situations it is applied. Then we outline the details for the DMFT approah.This is followed by a presentation of results for stati expetation values, like the averagepair density and the anomalous expetation value as funtion of the loal attration U anddynami spetral funtions.8.1 The BCS-BEC rossoverWhilst in the foregoing hapters we have disussed impurity and lattie models with a loalrepulsion, we onsider a system of fermions with loal attration in this last hapter of thethesis. As outlined in setion 1.2.2 the attrative model and the repulsive model an bemapped onto one another by a spin-isospin transformation. Symmetry breaking �elds inthe spin hannel then take the role of the orresponding symmetry breaking �elds in theharge hannel. Hene, for instane, the repulsive Hubbard model with the spontaneousantiferromagneti symmetry breaking as disussed in the last hapter translates to a hargeordering symmetry breaking for the attrative model. At half �lling harge order andsuperondutivity are degenerate as they form part of a larger symmetry group there.The fous here is on the superonduting state, whih orresponds to an o�diagonal longrange order in ontrast to the diagonal long range order for the antiferromagneti andharge ordered state. To study superonduting solutions it is therefore better to onsidera situation with a di�erent �lling fator, x 6= 1. We will explore the superondutingphase both at half �lling and also for quarter �lling, where no degeneray with the hargeordered state ours. The problem is approahed in a similar way as before with DMFT-NRG alulations.There are various reasons why it is of interest to study the attrative Hubbard model.One of them is that it an be viewed as an e�etive model for superondutors for di�erentoupling strength. In fat, in the famous theory of Bardeen, Cooper and Shrie�er (1957)



138 The attrative Hubbard model(BCS) an e�etive attrative model with a Debye uto� is studied. The loal attrationbetween the eletrons an be thought of as mediated by a boson, a phonon or exiton forinstane (Minas et al. 1990). Retardation e�ets are negleted in suh an approah. Inthe weak oupling limit, U → 0, BCS mean �eld theory has been very suessful. Theresulting exitation gap ∆sc in the spetrum and the transition temperature Tc an beobtained from simple mean �eld equations (Minas et al. 1990), and one �nds that bothdepend exponentially on U , viz ∆sc, Tc ∼ e−1/Uρ0 . The general piture in this situationis that for any attrative interations the Fermi-surfae of the non-interating eletrons isunstable to the formation of Cooper pairs (Cooper 1956). These pairs extend over a largerange in position spae and are often referred to as momentum spae pairs, c†k,↑c
†
−k,↓. Thekineti energy for the state with these pairs is a bit larger than in the normal phase, butthe bound-state formation leads to a gain in potential energy. The Cooper pairs only beginto form at the transition temperature Tc.In ontrast, in the strong oupling limit, where |U | exeeds the other energy sales, thefermions are tightly bound to loal pairs in position spae already at a high temperature

T0 of the order of U . These pairs behave like real bosons and an therefore undergoBose-Einstein ondensation (BEC) at a lower temperature Tc, whih is proportional to thepartile density and the inverse of the mass of the pairs mB. In this limit the e�etivemass mB of a boson (pair of fermions) an be related to the inverse of the pair hoppingamplitude tB. One �nds tB = 4t2/U in the lattie model (Dupuis 2005), and thus mB ∼ U .As a onsequene the ritial temperature for ondensation dereases with U , Tc ∼ t2/Uin the BEC limit. The transition here is driven by kineti energy, whih is lowered asfermion pairs join the ondensate with the lowest energy. The single partile exitationgap ∆sc in this limit is proportional to the magnitude of the attration, ∆sc ∼ U , sinethe binding energy of the pair inreases linearly with U . These two limiting ases, theweak oupling BCS limit and the strong oupling BEC limit, orrespond to quite di�erentsituations and it is remarkable that as disovered over the years, they are onneted by asmooth rossover (Eagles 1969, Nozières and Shmitt-Rink 1985, Randeria 1995, Leggett2006). It was shown that the spetral gap ∆sc at zero temperature evolves smoothly fromsmall to large U . Also the BCS wave-funtion from the weak oupling limit an be seen togo over ontinuously to a wave funtion of bosons as fermioni pairs in the strong ouplinglimit. Moreover, the transition temperature Tc to the super�uid state is a smooth funtionof the loal attration onneting the BCS and BEC limit. Here we will fous on theattrative Hubbard model to study this BCS-BEC rossover. It is worth mentioning thatthis problem has also been investigated by a ontinuum �eld theoreti model (Haussmann1992, Dupuis 2005, Randeria 1995, for instane).In the 1990s experimental groups were �rst able to realise BECs for laser ooled bosoniatoms, from whih the �eld of old atomi gases emerged. In reent years many groups havealso foused on studying the properties of fermioni old gas systems. When loaded into anoptial trap their interation an be tuned by means of a Feshbah resonane. One therefore



8.2 The DMFT setup 139has a very lean and ontrollable system, whih an be modelled by the Hubbard model.It has been possible to generate a BEC of tightly bound fermions (Greiner et al. 2003,Zwierlein et al. 2004), and experimental groups are working on deteting the full rossoverto the BCS limit (Zwierlein et al. 2005). Apart from the old gases the study of the BCS-BEC rossover had already been taken up by ondensed matter researhers interested inunderstanding the strong oupling and high temperature superondutors (Minas et al.1990). The high temperature superondutors ontain some properties, whih are betterunderstood in terms of loal pairs, preformed above the transition temperature Tc, thanin the BCS piture (Toshi et al. 2005). DMFT studies for the attrative Hubbard modelhave been arried out by Keller et al. (2001) and Capone et al. (2002) in the normal phase,and more reently by Garg et al. (2005) and Toshi et al. (2005) in the broken symmetryphase. Here we will also fous on desribing the attrative Hubbard model for various U inthe broken symmetry phase employing the DMFT-NRG method. The work presented inthis hapter is still in progress and the results are at a preliminary stage. We will thereforekeep the presentation very brief.8.2 The DMFT setupWe want to study the attrative Hubbard model in the grand anonial formalism (1.35),
H = −

∑

i,j,σ

(tijc
†
i,σcj,σ + h.c.) − µ

∑

iσ

niσ − U
∑

i

ni,↑ni,↓. (8.1)For onveniene we take this form (8.1) with U > 0. To study superonduting order weinlude an expliit superonduting symmetry breaking term Hsc with a ��eld� ∆0
sc. Aftera lattie Fourier transform (8.1) then reads

H +Hsc =
∑

k,σ

(εk − µ)c†k,σck,σ − ∆0
sc

∑

k

[c†k,↑c
†
−k,↓ + h.c.] − U

∑

i

ni,↑ni,↓. (8.2)Note that we have not restrited the k-summation in Hsc. The non-interating Green'sfuntion is best worked out in Nambu spae like in (5.10), i.e.,
G0

k(ω)−1 =

(

ω − ξk ∆0
sc

∆0
sc ω + ξk

)

, (8.3)where we have introdued ξk = εk − µ. The interating problem an be treated by intro-duing the matrix self-energy Σk(ω) suh that the interating Green's funtion is given bythe Dyson equation
Gk(ω)−1 = G0

k(ω)−1 − Σk(ω). (8.4)The DMFT formulation in the path integral formalism for this model is in analogy towhat has been presented in hapter 2. Due to the symmetry breaking �eld it is, however,



140 The attrative Hubbard modelsuitable to work in Nambu spae with
Ci(τ) :=

(

ci,↑(τ)

c†i,↓(τ)

)and 2×2 matries. The e�etive Weiss �eld is now a 2×2 matrix G−1
0 (τ) and the e�etiveation on the �0�-site reads

Se� = −
β
∫

0

dτ

β
∫

0

dτ ′
∑

σ

C0(τ)G−1
0 (τ − τ ′)C0(τ

′) − U

β
∫

0

dτ
∑

i

n0,↑(τ)n0,↓(τ). (8.5)As the e�etive impurity model we onsider the attrative Anderson model in a superon-duting medium (5.1) as disussed in the beginning of hapter 5 with an additional on-sitesymmetry breaking ∆d
sc. The non-interating Green's funtion matrix then has the formof equation (5.17),
G0(ω)−1 = ω12 − εdτ3 − ∆d

scτ1 −K(ω), (8.6)where εd = −µ and the on-site symmetry breaking �eld ∆d
sc = ∆0

sc. The generalised matrixhybridisation for the medium K(ω) has the form
K(ω) = τ3

1

N

∑

k

V 2
k gk

(ω)τ3, (8.7)where g
k
(ω) was given in (5.11).The DMFT self-onsisteny equation (2.71) in this ase with symmetry breaking is amatrix equation,

G−1
0 (ω) = G(ω)−1 + Σ(ω), (8.8)where we have dropped the k-dependene of the self-energy. We use the NRG to solve thee�etive impurity problem for a given medium K(ω) and alulate Σ(ω). From this wean obtain the diagonal loal lattie Green's funtion whih for the superonduting asetakes the form [f. (8.3) and (8.4)℄,

G(ω) =

∫

dε
ρ0(ε)(ζ2(ω) + ε)

(ζ1(z) − ε)(ζ2(ω) + ε) − (∆0
sc − Σ21(ω))(∆0

sc − Σ12(ω))
, (8.9)where ζ1(ω) = ω+µ−Σ11(ω) and ζ2(ω) = ω−µ−Σ22(ω). As before ρ0(ε) is the density ofstates of non-interating fermions. The o�diagonal loal lattie Green's funtion is givenby

Goff (ω) = −Σ21(ω)

∫

dε
ρ0(ε)

(ζ1(ω) − ε)(ζ2(ω) + ε) − (∆0
sc − Σ21(ω))(∆0

sc − Σ12(ω))
. (8.10)We denote G11 = G, G21 = Goff and G21(ω) = G12(−ω)∗, G22(ω) = −G11(−ω)∗. TheseGreen's funtions an be olleted to the matrix G. Having alulated the loal Green'sfuntion G the self-onsisteny equation (8.8) determines the new Weiss �eld and medium.



8.3 Renormalised quasipartile desription 141We take the impurity model in the form desribed in hapter 5, and identifyG0(ω) = G0(ω).Then from equation (8.6) we obtain an equation for the e�etive medium matrix K(ω).This has the general form (8.7), with diagonal,
K11(ω) =

1

N

∑

k

V 2
k

ω + εk
ω2 − (ε2k + ∆2

sc)
(8.11)and o�diagonal part,

K21(ω) =
1

N

∑

k

V 2
k

−∆sc

ω2 − (ε2
k

+ ∆2
sc)
. (8.12)Note that the parameter of the medium ∆sc is di�erent from the �external �eld� ∆0

sc. Inthe alulations with spontaneous superonduting order we will always onsider the limit
∆0

sc → 0, where a solution with superonduting symmetry breaking will have a bathparameter ∆sc 6= 0. Due to the symmetry broken form (8.11) and (8.12) it is not straightforward to extrat the parameters εk, Vk and ∆sc and the orresponding ones for thee�etive linear hain problem relevant in the NRG approah. To arry out the alulationshere we have onsidered the diagonal part of the medium K11(ω) as the earlier salarfuntion K(ω), from whih we an alulate the linear hain parameters by the standardmethod (Bulla et al. 1997, Bauer 2007). The medium parameter ∆sc (see hapter 5) isdetermined from the mean �eld riterion
∆sc = U〈c0,↑c0,↓〉 = U

0
∫

−∞

dω
(

− 1

π
ImGoff (ω)

)

. (8.13)This proedure has the advantage that the same NRG program as for alulations for theloal model in hapter 5 an be used. The obvious disadvantage is that we do not makefull use of the self-onsisteny equation involving K21(ω), and the mean �eld riterion(8.13) overestimates the size of the gap ∆sc. An improved approah needs to take into thefull matrix struture of the self-onsisteny equation properly, and a more general formof medium for the Anderson model with for instane an energy dependent parameter ∆scneeds to be onsidered. One possible way for suh a generalisation is desribed in Bauer(2007) setion 1.4.3.8.3 Renormalised quasipartile desriptionThe k-dependent Green's funtion is given as in equation (8.4),
Gk(ω) =

(

ω + ξk − Σ22(ω) ∆0
sc − Σ12(ω)

∆0
sc − Σ21(ω) ω − ξk − Σ11(ω)

)

[ω − ξk − Σ11(ω)][ω + ξk − Σ22(ω)] − [∆0
sc − Σ12(ω)][∆0

sc − Σ21(ω)]
, (8.14)The exitations of the system an be analysed as usual as the poles of (8.14), whih aregiven by the zeros of the denominator. In order to be able to develop a simple piture of



142 The attrative Hubbard modelthe quasipartile exitation of the attrative Hubbard model we proeed in a similar wayas in hapter 5, where we studied the bound state equation with renormalised parameters.We expand the diagonal self-energies to linear order and approximate the o�-diagonalones by a real onstant at ω = 0, similar as in (5.27). This is motivated by the fatthat the imaginary part of the self-energy vanishes in the gap, ImΣ(ω) = 0, and the fatthat numerial results for the real part show an approximately linear behaviour. In thisapproximation the exitations are given by
E0,±

k = ±E0
k = ±

√

ξ̃2k + ∆̃2
sc, (8.15)where we have introdued ξ̃k = z[ξk − Σ(0)] and ∆̃sc = z(∆0

sc − Σoff(0)), with the usualde�nition z−1 = 1−Σ(0)′. We an see that when we study spontaneous broken symmetryand take the limit ∆0
sc → 0, the superonduting gap is mainly given by the value zΣoff(0).Then the diagonal quasipartile Green's funtion G̃0

k(ω) and the o�diagonal part G̃0,off
k

(ω)an be written in the well-known form
G̃0

k(ω) =
u2

k

ω − E0
k

+
v2
k

ω + E0
k

, G̃0,off
k (ω) = ukvk

( 1

ω − E0
k

− 1

ω +E0
k

)

, (8.16)where
u2

k =
1

2

(

1 +
ξ̃k
E0

k

)

, v2
k =

1

2

(

1 − ξ̃k
E0

k

)

. (8.17)These expressions desribe the two bands of quasipartile exitations and their weights.They redue the Bogoliubov mean �eld result for z → 1 and Σ(0) = Un/2 and Σoff(0) =

U〈c0,↑c0,↓ 〉. This result is most aurate in the weak oupling limit for small U . Inthe strong oupling limit, the spetral gap is large and therefore the expansion around
ω = 0 is more questionable. We will show, however, that in the alulations presented thespetra an still be desribed well by the approximation (8.16). The spetral gap is thenproportional to U .In BCS theory the exitation gap ∆sc at T = 0 an be found from the equation

∆sc = U
∑

k

ukvk =
U

2

∑

k

z∆sc

E0
k

=
U

2

∑

k

∆sc
√

(εk − µ0)2 + ∆2
sc

, (8.18)where µ0 = µ − Σ(0) and the gap is de�ned as in equation (8.13), ∆sc = U〈c0,↑c0,↓ 〉.Equation (8.18) is learly appliable in the weak oupling limit, but also gives a reasonableresult in the strong oupling limit, where ∆sc = U
√

x(2 − x)/2 (Minas et al. 1990); x isthe �lling fator. As mentioned earlier the gap ∆sc given by (8.18) interpolates thereforesmoothly between the BCS and BEC limit. From equation (8.18) we an also determinethe anomalous expetation value 〈c0,↑c0,↓〉.Another quantity of interest is the double oupany 〈n↑n↓〉 or average pair density.In the non-interation limit it is given by (x/2)2. The probability to �nd an eletronwith spin σ on site is x/2 and as the partiles are unorrelated 〈n↑n↓〉 = (x/2)2. In the



8.4 Results 143strong oupling limit the probability to �nd an eletron on site is still x/2, but sine theattrative energy is large the probability to �nd another one there goes to one, and therefore
〈n↑n↓〉 → x/2. In other words, all partiles are then bound to pairs and the pair density isgiven by half the �lling fator, 〈n↑n↓〉 = x/2. The double oupany 〈n↑n↓〉 multiplied by
U is also of interest as it gives the expetation value of the potential energy. For a systemin a oherent super�uid state another relevant quantity is the super�uid sti�ness Ds. It isa measure for the energy required to to twist the phase of the ondensate. It is thereforerelated to the degree of phase oherene of the superonduting partiles, and it is usuallyproportional to the super�uid density ns. It an be found either from the weight of thedelta-funtion in the optial ondutivity or from the urrent-urrent orrelation funtion.In the DMFT approah and for the Bethe lattie with semiirular density of states ρ0(ε)(2.75) it an be alulated diretly from the o�diagonal Green's funtion (Toshi et al.2005). At zero temperature it takes the form,

Ds = − 8

π

∫

dεk ρ0(εk)V (εk)

0
∫

−∞

dω ImGr,off
k (ω)ReGr,off

k (ω), (8.19)where Gr,off
k

(ω) is the retarded o�diagonal Green's funtion (8.14) and V (εk) = (4t2−ε2k)/3is a square vertex (Toshi et al. 2005). We an evaluate the expression (8.19) using therenormalised quasipartile Green's funtion zG̃0,off
k

(ω) (8.16), whih yields the somewhatsimpler expression
Dqp

s = 4z2

D
∫

−D

dεk ρ0(εk)V (εk)
u2

kv
2
k

E0
k

. (8.20)8.4 ResultsWe have arried out DMFT-NRG alulations for the attrative Hubbard model at half andquarter �lling in the state with spontaneously broken symmetry, ∆0
sc → 0. For simpliitythe semiirular density of states (2.75) was used. The energy sale is set by t = 1 suh thatthe bare bandwidth W = 4. In �gure 8.1 we give results for the stati expetation valuesdouble oupany 〈n↑n↓〉 and the anomalous expetation value 〈c0,↑c0,↓〉 as a funtion of

U for x = 1 (left) and x = 0.5 (right).We an see that as disussed above the pair density or double oupany inreases on-tinuously from the value (x/2)2 (1/4, left, and 1/16, right) at U = 0 to the value (x/2)(1/2 and 1/4). The anomalous expetation value 〈c0,↑c0,↓〉 is zero in the non-interatingase, and for small U it inreases like e−1/Uρ0(0) as in BCS theory. For large U it tendsto the value √x(2 − x)/2 (1/2, left, and 0.433, right) as disussed above. The gap ∆scis then proportional to U as expeted in the BEC limit (energy for pair breaking). Thedashed line gives the result for 〈c0,↑c0,↓ 〉 from the mean �eld equation (8.18), whih �tsthe DMFT-NRG result very well for the full range of interations U . Due to numerial



144 The attrative Hubbard model

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

U

 

 

〈n
0,↑n

0,↓ 〉

 〈c
0,↑c

0,↓ 〉

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

U

 

 

〈n
0,↑n

0,↓ 〉

 〈c
0,↑c

0,↓ 〉Figure 8.1: The stati expetation values double oupany 〈n↑n↓ 〉 and the anomalousexpetation value 〈c0,↑c0,↓ 〉 as a funtion of U for half �lling (left) and quarter �lling(right). The dashed line gives the result for 〈c0,↑c0,↓〉 from the mean �eld equation (8.18).problems with the small gap and very sharp peaks the BCS limit was not investigated ingreat detail with the DMFT-NRG alulations.In �gure 8.2 the super�uid sti�ness Ds alulated from equation (8.19) is shown as afuntion of U for half �lling (left) and for quarter �lling (right). The dashed line showsthe result as obtained from equation (8.20), where the quasipartile Green's funtions areused to evaluate the integrals.
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Figure 8.2: The super�uid sti�ness Ds as alulated from the o�diagonal Green's funtionin equation (8.19) for x = 1 (left) and x = 0.5 (right). The dashed line gives the result for
Ds, when evaluated with the quasipartile Green's funtions as in (8.20).We an see that the results forDs agree generally well, whih shows that the approximation
(8.20) is already quite good. In both ases for the �lling the super�uid sti�ness is maximalin the BCS limit and dereases to small values in the BEC limit. Ds is proportional tothe inverse of the e�etive mass of the pairs mB ∼ U , and therefore expeted to dereaselike 1/U . The system in this limit onsists of heavy, weakly interating bosons, withlittle phase oherene. The results shown are in agreement with the ones reported by



8.4 Results 145Toshi et al. (2005). At the time of writing it has not been possible to investigate the BCSlimit, U → 0, in more detail with the DMFT-NRG alulation in detail due to numerialproblems when evaluating the integrals in (8.19). It an, however, be studied in BCS mean�eld theory based on (8.18) for the gap. One �nds in the limit U → 0, whih implies that
∆sc → 0, that the super�uid sti�ness Ds goes to a onstant value. The super�uid sti�nessis therefore maximal in the BCS limit, when alulated with the approximations here.We now turn to the spetral funtions ρk(ω) = −ImGk(ω)/π. In the BCS limit we ex-pet that they an be desribed well by the free quasipartile spetra zρ̃0

k = z[−ImG̃0
k(ω)]/π(8.16). In �gure 8.3 we plot the k-resolved spetra in the two limiting ases for U = 1(BCS limit, left) and U = 6 (BEC-limit, right) for quarter �lling, x = 0.5.

−3 −2 −1 0 1 2 3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

ω

ε k

−4 −2 0 2 4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

ω

ε k

Figure 8.3: The k-resolved spetral funtions ρk(ω) for quarter �lling in the BCS-limit,
U = 1 (left), and towards the BEC limit, U = 6 (right). The arrows show the delta-funtionpeaks of zρ̃0

k(ω), where the height of the arrow indiates the weight of the peak.We plots show a small spetral gap for U = 1 and a large gap (Eg = 2∆sc) of the order of Ufor the strong oupling ase. We an see a series of broadened quasipartile peaks whih aremost narrow in the region εk = µ0, where µ0 = µ−Σ(0) (numerially µ0 ≃ −0.79 for U = 1and µ0 ≃ −1.61 for U = 6). As an be seen εk = µ0 is also the point where the spetralgap is minimal. We have also added arrows orresponding to zρ̃0
k(ω), whih indiate theposition of the quasipartile peaks ±E0

k and the height gives the spetral weight. We ansee that they trak very well the position of the real quasipartile exitation Ek in bothases. The width of the peaks omes from the imaginary part of the self-energies whihlead to a �nite life-time of these quasipartiles. These spetra an be ompared with theones presented by Garg et al. (2005). There the quasipartile exitation delta peaks aredisonneted from the ontinuum, whih is however an artefat of the approximation forthe self-energy there, whose imaginary part vanishes over too large a region in ω. Asmentioned, in the BEC limit (right) the e�etive mass mB of a boson pair mB ∼ U . Thisan be seen re�eted in the small e�etive band width for the ase U = 6. In this ase itis not related to the quasipartile weight z, whih assumes values lose to one. The weightof the peaks in the full spetrum ρk(ω) is in aordane with the height of the arrows for
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zρ̃0

k(ω). We an see that in the BCS limit (left) the weight in the lower band dereasesrapidly to zero near εk = µ0, whereas in the BEC limit (right) it spreads over a muhlarger region. This an be seen in more learly in �gure 8.4, where we plot the momentumdistribution nk = v2
k alulated from (8.17) for x = 1 (left) and x = 0.5 (right).
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Figure 8.4: The momentum distribution nk = v2
k alulated from (8.17) for x = 1 (left)and x = 0.5 (right).In both ases (x = 0.5, 1) for small attration (U = 1) we an see that nk shows the typialform known from BCS theory dropping from one to zero in a small range around εk = µ0.Therefore, some momentum states above µ0 are oupied, but only in a small region ofthe order of the gap. When U is inreased, the momentum distribution is spread over alarger range. In the BEC limit, where the fermions are tightly bound and therefore veryloalised in position spae, we expet the momentum distribution to be spread due to theunertainty priniple. In all ases the sum rule 1/N

∑

k nk = x/2 is satis�ed numeriallywithin an auray of about 1%.To summarise, we have disussed the behaviour of attrative fermions in the Hubbardmodel from weak to strong oupling at T = 0 with the DMFT-NRG approah. We founda smooth rossover of the relevant response quantities, expetation values and the spetralfuntions. The desription in terms of non-interating renormalised quasipartiles ouldon the whole represent the results of the full DMFT-NRG alulation well.



Conlusions
Cuando estes triste, ponte a antar,uando estes alegre, ponte a llorar.Cuando estes vaio, de verdad va-io, ponte a mirar. Jaime Sabines

A number of di�erent topis in ondensed matter theory have been addressed in this thesis,ranging from Kondo physis in quantum dot systems with normal and superondutingleads over magneti order in lattie models to super�uidity for attrative fermions. Beforeputting the sienti� ontributions into perspetive let us reapitulate on what has beenpresented.After the desription of the relevant models (AIM and Hubbard model) and methods(NRG, RPT and DMFT) in the �rst part, we have studied the AIM subjet to ertaintypes of symmetry breaking. We saw that the low energy quasipartile exitations andthe response of the AIM to a magneti �eld ould be haraterised well in terms of �elddependent renormalised parameters. In an RPT expansion based on these parameters dy-nami orrelation funtions ould be dedued, and they were in good agreement with NRGresults for a signi�ant range of frequenies. This approah was shown to be generalisableto the non-equilibrium situation where the RPT is arried out in the Keldysh-formalism.It ould be used there to alulate the non-equilibrium di�erential ondutane in quan-tum dot systems in a magneti �eld. Thus, we have presented a reliable desription of theAIM in magneti �eld in equilibrium with NRG and RPT, and a promising possibility forthe non-equilibrium situation in the RPT framework. For the one-partile quantities inboth the equilibrium and non-equilibrium ase, however, a more thorough analysis of theRPT approah is neessary to understand, what the most important proesses are up to aertain sale, in frequeny ω, magneti �eld h, and voltage eV . Also the treatment of theounter-terms for the renormalised self-energy, when summing diagrams to in�nite order,has not been ompletely satisfatory from a formal perspetive.For the AIM with superonduting symmetry breaking in the bath we gave a thoroughdesription of stati and dynami properties dedued from NRG alulations. This inludedthe ground state transition from a singlet to a doublet state with varying interation or levelposition. We presented detailed results for the position and weight of the loalised exitedstate in the gap, the Andreev bound state. These quantities ould also be alulated froma renormalised parameter analysis based on a low energy expansion of the self-energy. Asthe system is not a Fermi liquid we ould not readily extend the method of extrating theserenormalised parameters from the NRG low energy exitations. This might, however, bepossible when a more general form of the exitation is onsidered and an be subjet of



148 Conlusionsfurther researh.For the lattie model in a homogeneous magneti �eld in the third part of the thesis,we showed that the methods applied to the loal model ould be extended. We were ableto dedue renormalised parameters for the quasipartile desription and to alulate thedynami suseptibilities in an RPT expansion. We also presented a thorough analysis ofdi�erent types of qualitative behaviour of the strongly orrelated eletron system in a mag-neti �eld. This inludes the phenomenon of metamagnetism, whih ours at half �llingand intermediate oupling strength. Away from half �lling no metamagneti behaviour wasobserved, but renormalisation e�ets near half �lling are strong and the spin dependente�etive masses of the quasipartiles di�er markedly.The last two hapters dealt with spontaneous symmetry breaking. We analysed ingreat detail the properties of the quasipartile exitations in a metalli antiferromagnetistate. Renormalised parameters ould be dedued as before, but the symmetry breakingnature leads to expressions for the spetral quasipartile weight and the e�etive massenhanement di�erent from the ones in the normal state, where they are just given by theinverse of one another. Therefore, the quasipartiles in the doped antiferromagneti systeman have a rather large spetral weight and at the same time a large e�etive mass. Thisan be understood physially from the hole motion in an antiferromagnetially orderedstate. For the orresponding attrative system we studied the broken symmetry state withsuperonduting order. We showed that the rossover of stati quantities and spetralfuntions from the BCS superonduting regime at weak oupling to the BEC regime oftightly bound fermions at strong oupling ours smoothly. We also saw at half and atquarter �lling for any attration that the stati and dynami properties of the systeman be desribed in a good approximation by non-interating, renormalised quasipartileexitations. This is not surprising in the BCS limit, but it is remarkable in the BEC limit,where there is a large spetral gap.With these diverse situations in mind we an return to the unifying question of the thesisposed in the introdution: what are the properties of quasipartile exitations subjet toertain symmetry breakings, and how an they be analysed. Clearly, the properties of thequasipartile exitations in loal and lattie models of strongly orrelated fermions di�erwith the kind of symmetry breaking ouring. For instane, the loal system remains aFermi liquid for any magneti �eld applied, whereas the ground state of the lattie modelan be insulating. We have shown, however, that a desription in terms of renormalisedparameters, whih an be obtained from the one-partile self-energy, and in some ases alsodiretly from the low lying exitations, is possible in all ases dealt with here. This is veryimportant as it allows us to formulate a simpli�ed desription in terms of non-interatingrenormalised quasipartiles, whih is valid as a �rst approximation. It is remarkable thatthis is not limited to the ases, where the system is stritly a Fermi liquid, but also worksfor ases with symmetry breaking. This suggests that the RPT approah is extendableto a larger lass of systems, and it has already been proven to be useful for the lattie



149models in hapters 6 and 7. This gives an exiting prospet, but we have to bear in mindthat the work arried out for the lattie models is exat only in the in�nite dimensionallimit. Therefore, the work presented is only a piee in a muh larger puzzle, whih providesertain links and insights but requires future work in many diretions. We will mentionbut a few in the following.The NRG alulations for the AIM in magneti �eld give a rather omplete piture.More work is needed to understand the details of the RPT approah both in equilibriumand non-equilibrium. This inludes �nding good perturbative approximations as well asa satisfatory treatment of the ounter-terms. A self-onsistent approah with dressedquasipartile propagators, as skethed in the appendix C.3, gives a promising route to fol-low. The AIM in a superonduting bath at and away from half �lling is well understoodfrom alulations with the NRG methods by this and other groups' work. A better under-standing of the low energy exitations in terms of renormalised quasipartiles would be ofinterest. Moreover, an extension of the analysis to the situation with two leads with dif-ferent omplex gap parameters, Josephson urrents and non-equilibrium transport, wouldbe of onsiderable interest for theory and experiment.As for the lattie models, many future avenues of researh an be envisaged leadingon from the work presented, and we an only hint towards a few. For instane, the e�etof phonons in doped antiferromagnetially ordered state is of onsiderable interest in theondensed matter ommunity as it an be relevant for the understanding of the behaviourof materials of strongly orrelated eletrons, for instane the uprate superondutors. Alsoordered states in more ompliated models than the Hubbard model, e.g. with ouplingto a loalised magneti moment, would be of great interest. The attrative model withsuperonduting order also deserves more attention. A DMFT-NRG treatment takinginto aount the full self-onsisteny equations needs to be arried out. Apart from themodel with on-site attration, strongly orrelated models with a ompetition of on-siterepulsion and a oupling to loal phonon mode, like the Hubbard-Holstein model, withsuperonduting ordering ould then also be addressed. This would be of onsiderableinterest for the phenomenon of superondutivity in fullerides. These suggestions do notomprise an exhaustive list, and many other studies ould be proposed.The �nal onlusion at this stage is the hope that in the same way as this work hasbuilt on and bene�tted from many earlier studies, its insights may serve as a fruitful basisfor future researh on strong orrelation e�ets in ondensed matter physis. After all, asGeorge Bernard Shaw puts it, it is in the nature of siene that it never solves a problemwithout reating ten more.
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Appendix ASpetral funtions in the full densitymatrix (FDM) approahIn this setion of the appendix we give details for the full density matrix approah toalulate spetral funtions in the NRG based on the Anders Shiller basis. We deriveexpliit expressions for the redued density matrix and for dynami response funtions.A.1 General expressionsBefore deriving the general expressions for a orrelation funtion, let us �rst we establisha few general relations. The starting point for the following onsiderations is the ompleteAnders Shiller (AS) basis for the NRG hain (2.20),
{|l,e;m〉}m=m0 ,...,N . (A.1)The unit operator an be then expressed as follows1 =

N
∑

m=m0

∑

l,e

|l,e;m〉〈l,e;m |. (A.2)Also the following relation for disarded (l) and kept part (k) an be found (Peters et al.2006),
N
∑

m=m1+1

∑

l,e

|l,e;m〉〈l,e;m | =
∑

k,e

|k,e;m1〉〈k,e;m1 |. (A.3)Our aim is now to express the one-partile Green's funtion in terms of the AS basisemploying the onept of the redued density matrix. First we onsider generally foroperators A,B, tr(ρA(t)B) = tr(ρeiHtAe−iHtB). (A.4)



154 Spetral funtions in the full density matrix (FDM) approahThis is evaluated astr(ρeiHtAe−iHtB) =
∑

l,e,m

〈l,e;m|eiHtAe−iHtBρ|l,e;m〉

=
∑

l1,e1,m1

∑

l2,e2,m2

〈l1,e1;m1|eiHtAe−iHt|l2,e2;m2〉〈l2,e2;m2|Bρ|l1,e1;m1〉Now we divide the sum over m2 into three parts: m2 > m1, m2 = m1 and m2 < m1.Equation (A.3) an be used to write the part m2 > m1 astr(ρeiHtAe−iHtB)m2>m1 =
∑

m

∑

l,e1,k,e2

〈l,e1;m|eiHtAe−iHt|k,e2;m〉〈k,e2;m|Bρ|l,e1;m〉.(A.5)For m2 < m1 we rearrange the summation aording to
N
∑

m1=m0+1

m1−1
∑

m2=m0

f(m1,m2) =

N−1
∑

m2=m0

N
∑

m1=m2+1

f(m1,m2). (A.6)Using (A.3) we �nd then a similar term as in equation (A.5), but kept and disarded statesare interhanged,tr(ρeiHtAe−iHtB)m2<m1 =
∑

m

∑

l,e1,k,e2

〈l,e2;m|Bρ|k,e1;m〉〈k,e1;m|eiHtAe−iHt|l,e2;m〉.(A.7)If we ollet all these terms we obtain the following expression traetr(ρeiHtAe−iHtB) =
∑

m

∑

l1,e1,l2,e2

〈l1,e1;m|eiHtAe−iHt|l2,e2;m〉〈l2,e2;m|Bρ|l1,e1;m〉

+
∑

m

∑

l,e1,k,e2

〈l,e2;m|Bρ|k,e1;m〉〈k,e1;m|eiHtAe−iHt|l,e2;m〉

+
∑

m

∑

l,e1,k,e2

〈l,e1;m|eiHtAe−iHt|k,e2;m〉〈k,e2;m|Bρ|l,e1;m〉.(A.8)By de�nition of the AS basis |k, e;m〉 and |l, e;m〉 are exat eigenstates of the Hamiltonianat stage m, Hm, Hm|α, e;m〉 = Eα
m|α, e;m〉. The approximation whih is made in orderto evaluate the expressions is that they are also eigenstates to the Hamiltonian of the fullhain H = HN , whih amounts to saying that the e�ets from further environment sites,whih due to the NRG setup ouple with dereasing energies are only a small perturbation,

H|α, e;m〉 ≈ Eα
m|α, e;m〉. (A.9)This an be used in the expressions (A.8) above. We also assume that for zero temperaturedue to energy sale separation the density matrix an be given diretly in the diagonal basisat the last iteration

ρ =
∑

l

e−βN El
N

Z
|l,N〉〈l,N |. (A.10)



A.2 Details for Quantum numbers Q,Sz 155Here we an take βN ∼ ΛN/2 and Z =
∑

l e
−βNEl

N . As a onsequene, ρ|l,e;m 〉 = 0for m < N , sine the states are orthogonal. Therefore, only the term in the seondline in equation (A.8) ontributes. Terms with kept states at step Nmax vanish, sine byde�nition of the AS basis there are none. Taking into aount the ommutator term inthe de�nition of the retarded Green's funtion [GAB(t) = −iθ(t)tr(ρ[A(t), B]ε) (ε = −1bosoni, ε = 1 fermioni)℄ and olleting the above the results the general Green's funtion
GAB(ω) =

∫

dt eiωtGAB(t),
GAB(ω) =

∑

m

∑

l1,l2,l3

Bl2l3(m)ρred
l3l1

(m)Al1l2(m) + εAl1l2(m)ρred
l2l3

(m)Bl3l1(m)

ω − (El2
m − El1

m)

+
∑

m

∑

l,k1,k2

Blk1(m)ρred
k1k2

(m)Ak2l(m)

ω − (El
m − Ek2

m )
+
εAlk1(m)ρred

k1k2
(m)Bk2l(m)

ω − (Ek1
m − El

m)
.(A.11)The m-summation runs from m0, where the trunation starts to Nmax. We have used

〈l1,e1;m|A|l2,e2;m〉 = δe1,e2Al1l2(m), (A.12)and the de�nition of the redued density matrix
ρred

k1k2
(m) =

∑

e

〈k1,e;m|ρ|k2,e;m〉. (A.13)Sine ρ|l,e;m〉 = 0 for m < N the term in the �rst line only ontributes for the last step
N and then, sine ρ is diagonal there, takes the form

G
(1)
AB(ω) =

1

Z

∑

l1,l2

Al1l2(N)Bl2l1(N)(e−βE
l1
N + εe−βE

l2
N )

ω − (El2
N − El1

N )
. (A.14)A.2 Details for Quantum numbers Q, SzIn the following setions we give the expliit expressions for the matrix elements appearingin the alulations, when Q and Sz are good quantum numbers. We desribe how to al-ulate the redued density matrix, the one-partile Green's funtion and other orrelationfuntions. When di�erent quantum numbers, e.g. Q and S, are used, the expressions aredi�erent due to the redued matrix elements and Clebsh Gordon oe�ients, whih areusually used (Bauer 2007).A.2.1 Redued density matrixIn this setion we will give the expressions for the density matrix in terms of matrix elementsand transformation matries for the ase where Q,Sz are good quantum numbers. Let thedensity matrix of the step N , whih is not neessarily the last iteration, be given by

ρN =
∑

Q,Sz,rN ,r′
N

|Q,Sz, rN 〉N WN (Q,Sz; rN , r
′
N ) N〈Q,Sz, r

′
N |. (A.15)



156 Spetral funtions in the full density matrix (FDM) approahWe start at N = Nmax with a diagonal ρ suh that
WN (Q,Sz; rN , r

′
N ) = δrN ,rN′

e−λN EN (Q,Sz,rN )

ZN
, (A.16)

ZN = tr(e−λN H) and λN = βλ−
N−1

2 .The usual basis transformation in the NRG is given by (Bauer 2007)
|Q,Sz, rN 〉N =

∑

UQSz(rN ; rN−1, i)|Q,Sz , rN−1, i〉N , (A.17)where i = 1, . . . , 4 and rN = 1, . . . , 4rN−1. De�ne the Fok basis for site N on the linearhain as |JN 〉 (JN = 1, . . . , 4) with
|1N 〉 := |0N 〉, |2N 〉 := f †N,↑|0N 〉, |3N 〉 := f †N,↓|0N 〉, |4N 〉 := f †N,↑f

†
N,↓|0N 〉. (A.18)The basis for step N and N − 1 are related by

|Q,Sz, rN−1, 1〉N := |Q+ 1, Sz, rN−1〉N−1 ⊗|1N 〉, (A.19)
|Q,Sz, rN−1, 2〉N := |Q,Sz −

1

2
, rN−1〉N−1 ⊗|2N 〉, (A.20)

|Q,Sz, rN−1, 3〉N := |Q,Sz +
1

2
, rN−1〉N−1 ⊗|3N 〉, (A.21)

|Q,Sz, rN−1, 4〉N := |Q− 1, Sz, rN−1〉N−1 ⊗|4N 〉. (A.22)The �rst step is to substitute (A.17) into (A.15),
ρN =

∑

WN (Q,Sz; rN , r
′
N )UQSz(rN ; rN−1, i)UQSz(r

′
N ; r′N−1, j) × (A.23)

×|Q,Sz, rN−1, i〉N 〈Q,Sz, r
′
N−1, j |.The redued density matrix for step N − 1 is then found by the partial trae

ρN−1 =

4
∑

JN=1

〈JN |ρN |JN 〉. (A.24)This is evaluated by substituting (A.23) into (A.24) and making use of (A.19)-(A.22).This yields
ρN−1 =

∑

|Q,Sz, rN−1〉N−1 WN−1(Q,Sz; rN−1, r
′
N−1) N−1〈Q,Sz, r

′
N−1 | (A.25)with

WN−1(Q,Sz; rN−1, r
′
N−1) =

∑

rN ,r′
N

(

UQ−1,Sz(rN ; rN−1, 1)WN (Q− 1, Sz ; rN , r
′
N )UQ−1,Sz(r

′
N ; r′N−1, 1)

+UQ,Sz+ 1
2
(rN ; rN−1, 2)WN (Q,Sz +

1

2
; rN , r

′
N )UQ,Sz+ 1

2
(r′N ; r′N−1, 2)

+UQ,Sz−
1
2
(rN ; rN−1, 3)WN (Q,Sz −

1

2
; rN , r

′
N )UQ,Sz−

1
2
(r′N ; r′N−1, 3)

+UQ+1,Sz(rN ; rN−1, 1)WN (Q+ 1, Sz; rN , r
′
N )UQ+1,Sz(r

′
N ; r′N−1, 4)

)

. (A.26)



A.2 Details for Quantum numbers Q,Sz 157A.2.2 Expressions for the dynami orrelations funtionsWe give the relevant expliit expressions for the one-partile Green's funtion. The startingpoint is the Green's funtion in the general form (A.11) and we use A = cd,σ = B†. Letus deal with the term in the �rst line in (A.11), where we diretly take the representation(A.14). We use |l1〉 →|Q− 1, Sz − σ/2, l1〉 and |l2〉 →|Q,Sz, l2〉 and �nd
G

(1)
d,σ(ω) =

1

Z

∑

l1,l2

|〈Q,Sz, l2|c†d,σ |Q− 1, Sz − σ/2, l1〉|2(e−βE(Q−1,Sz−σ/2,l1) + e−βE(Q,Sz,l2))

ω − [E(Q,Sz , l2) − E(Q− 1, Sz − σ/2, l1)]
.(A.27)Then we fous on the terms in the seond line in (A.11) and look at the expression at aspei� iteration m < N and

G
(2),m
d,σ (ω) =

∑

l,k1,k2

[c†d,σ]lk1(m)ρred
k1k2

(m)[cd,σ ]k2l(m)

ω − (El
m − Ek2

m )
+

[cd,σ]lk1(m)ρred
k1k2

(m)[c†d,σ ]k2l(m)

ω − (Ek1
m − El

m)
.(A.28)Let us onsider the �rst term, whih desribes positive exitations between disarded(higher) energies and kept (lower) energies. We omit them index for the iteration and writefor the disarded states |l〉 →|Q,Sz, l〉. The kept state |k1〉 is written as |Q−1, Sz −σ/2, k1〉,whilst |k2〉 beomes |Q− 1, Sz − σ/2, k2〉. Therefore, the oe�ient an be written as

〈Q,Sz, l|c†d,σ |Q− 1, Sz − σ/2, k1〉W (Q− 1, Sz − σ/2; k1, k2)〈Q− 1, Sz − σ/2, k2|cd,σ|Q,Sz, l〉 =

〈Q,Sz, l|c†d,σ|Q− 1, Sz − σ/2, k1〉W (Q− 1, Sz − σ/2; k1, k2)〈Q,Sz, l|c†d,σ |Q− 1, Sz − σ/2, k2〉∗where this termed is summed over k1 from 1 to rg(Q − 1, Sz − σ/2), the orrespondingrange. We denote this expression inluding the summation by ασ(Q,Sz; l, k2). The wholeterm an then be written as
∑

Q,Sz,k2

rg_bt(Q,Sz)
∑

l=rg(Q,Sz)+1

ασ(Q,Sz; l, k2)

ω − [E(Q,Sz , l) − E(Q− 1, Sz − σ/2, k2)]
, (A.29)where the range before the trunation rg_bt(Q,Sz) was used as summation limit. Theseond term in equation (A.28), whih aounts for negative energy exitations, similarlyhas the form

∑

Q,Sz,k1

rg_bt(Q,Sz)
∑

l=rg(Q,Sz)+1

ασ(Q+ 1, Sz + σ/2; l, k1)

ω − [E(Q+ 1, Sz + σ/2, k1) −E(Q,Sz , l)]
, (A.30)with ασ(Q+ 1, Sz + σ/2; l, k1) given by

〈Q,Sz, l|cd,σ |Q+ 1, Sz + σ/2, k1〉W (Q+ 1, Sz + σ/2; k1, k2)〈Q+ 1, Sz + σ/2, k2|c†d,σ|Q,Sz, l〉 =

〈Q+ 1, Sz + σ/2, k1|c†d,σ|Q,Sz, l〉∗W (Q+ 1, Sz + σ/2; k1, k2)〈Q+ 1, Sz + σ/2, k2|c†d,σ|Q,Sz, l〉



158 Spetral funtions in the full density matrix (FDM) approahThe higher F -Green's funtion, de�ned by
Fσ(t) = −iθ(t)〈{[cd,σc

†
d,−σcd,−σ](t), c†

,σ}〉, (A.31)an be obtained starting from expression (A.11) in a similar way using A(t) = [cd,σn−σ](t)and B = c†,σ (Bauer 2007). In analogous way, the longitudinal spin orrelation funtion,given by
χl(t) = −iθ(t)〈[Sz(t), Sz]〉, (A.32)is found. We an set A = B = Sz and use the Green's funtion in the form (A.11) with

ε = −1. Similarly, with A = B∗ = S+ the transverse spin orrelation funtion an bealulated. For details we refer the reader to (Bauer 2007).



Appendix BRenormalised parameters from NRGalulationsIn this setion we desribe how renormalised parameters an be dedued from the exita-tions in the NRG alulations. We want to disuss the general ase, whih is valid for theimpurity models in part 2 (hapters 3 and 4) as well as the lattie models in hapters 6and 7. We start by onsidering a more general form of the linear hain Hamiltonian (2.1),inluding the impurity but without the interation term. It is denoted by H0
−1,N ,

H0
−1,N = Λ(N−1)/2

N
∑

σ,n=−1

εn,σc
†
n,σcn,σ + Λ(N−1)/2

N
∑

σ,n=−1

βn,σ(c†n,σcn+1,σ + h.c.). (B.1)Here βn,σ are the spin dependent hopping elements and on-site energies εn,σ of the linearhain. We de�ned β−1,σ ≡ Vσ and ε−1,σ = εd,σ . For the DMFT situation with magnetisymmetry breaking the medium an beome polarised, whih implies that the omplexhybridisation funtion Kσ(ω) is spin-dependent. Therefore we need to inlude a spin-dependent hopping amplitudes βn,σ as well as on-site energies εn,σ. They an be obtainedfrom ∆σ(ω) = ImKσ(ω) in a proedure desribed in Bulla et al. (1997).First we would like to derive the Green's funtion for this linear hain model. For aertain iteration N denote the linear hain model from site i to N by H0
i,N , i = 0, 1, ...,N .The Green's funtion at the impurity site an by written in matrix notation 〈−1|(ω −

H0
−1,N )−1| − 1〉 and related to other matrix elements depending on H0

i,N by a reursiveproedure (|i〉 = f †i|vac〉). In order to �nd this expliitly one needs to onsider the inversionof the orresponding band matries. Taking all fators into aount one obtains the non-interating Green's funtion for the linear hain model
Gσ

−1−1(ω) =
1

ω − εd,σΛ(N−1)/2 − V 2
σ ΛN−1g00,σ(ω)

(B.2)where gii,σ(ε) is the Green's funtion for site i and expressed as
gii,σ(ε) =

1

ε− εi,σΛ(N−1)/2 − β2
i,σΛ(N−1)gi+1i+1,σ(ε)

. (B.3)



160 Renormalised parameters from NRG alulationsNote that the Green's funtions orrespond to matrix elements gii,σ(ω) = 〈i|(ω−H0
i,N )−1|i〉.As usual one-partile exitations Eσ are given by the poles of the Green's funtion andhene by the equations (σ = ±1)

Eσ − εd,σΛ(N−1)/2 − V 2
σ ΛN−1g00,σ(Eσ) = 0. (B.4)For a ertain iteration N denote the single partile exitation from the ground state forthe non-interating system by E0

p,σ(N) and the hole exitations by E0
h,σ(N). For the holeexitation we have to inlude a negative sign for the energy and also the opposite spinorresponds to the value for the exitation, suh that equation (B.4) gives in a slightrearrangement

E0
p.σ(N)Λ−(N−1)/2

V 2
σ

− εd,σ

V 2
σ

= Λ(N−1)/2g00,σ(E0
p,σ(N)) (B.5)and

−E0
h,σ(N)Λ−(N−1)/2

V 2
−σ

− εd,−σ

V 2
−σ

= Λ(N−1)/2g00,−σ(−E0
h,σ(N)). (B.6)We see therefore that the up/down spin hole exitations E0

h,↑(N)/ E0
h,↓(N) are related tothe parameters εd,↓/ εd,↑, respetively.This analysis of the non-interating problem an be extended by swithing on theinteration U . The aim is to determine the renormalised parameters ε̃d,σ and Ṽ 2

σ for thequasipartile exitations (Hewson et al. 2004). As above, for a ertain iteration N , butnow for the interating system denote the single partile exitation from the ground stateby Ep,σ(N) and Eh,σ(N) in analogy as hole exitation. The N -dependent free quasipartileparameters ε̃d,σ(N) and Ṽσ(N)2 are then in analogy to (B.5) and (B.6) given by
Ep,σ(N)Λ−(N−1)/2

Ṽ 2
σ (N)

− ε̃d,σ(N)

Ṽ 2
σ (N)

= Λ(N−1)/2g00,σ(Ep,σ(N)) (B.7)and
−Eh,σ(N)Λ−(N−1)/2

Ṽ 2
−σ(N)

− ε̃d,−σ(N)

2Ṽ 2
−σ(N)

= Λ(N−1)/2g00,−σ(−Eh,σ(N)). (B.8)Note that Ep,σ(N) and Eh,σ(N) are obtained numerially at eah NRG step. The lowenergy renormalised parameters ε̃d,σ, ∆̃σ are then de�ned by ε̃d,σ = limN→∞ ε̃d,σ(N) and
∆̃σ = limN→∞ ∆̃σ(N). In pratie for most ases, for Λ = 2 a number of iterations
Nmax ≃ 50 is su�ient to determine the renormalised parameters aurately. We an givean expliit equation for ∆̃(N) by subtrating the two equations above

Ṽ 2
σ (N) = Λ−(N−1) Ep,σ(N) + Eh,−σ(N)

g00,σ(Ep,σ(N)) − g00,σ(−Eh,−σ(N))
(B.9)and from this ε̃d,σ(N) is easily determined in (B.7).



161We an also determine the loal quasipartile interation Ũ from the NRG results. Theidea that helps to �nd it is to notie that it must be related to the di�erene between a two-partile exitation and two one-partile exitations. Having determined the quasipartileparameters ε̃d,σ and Ṽd,σ via the proedure desribed above, we an give the free quasi-partile Hamiltonian [(1.12) without Ũ ℄ in the linear hain form. It an be diagonalisednumerially and written as
Hσ = Λ−N−1

2

(N+2)/2
∑

k=1

(Ep,k,σp
†
k,σpk,σ + Eh,k,σh

†
k,σhk,σ) (B.10)where pk,σ and hk,σ are partile and hole operators, respetively. All terms involve a spinlabel σ, but no mixing of opposite spins ours. Therefore, we an diagonalise the twospin omponents separately. We denote the energetially lowest one-partile exitation by

Ep,1,σ, suh that Ep,1,σ = Ep,σ (see above), and similarly for the holes. In order to relatethe quasipartile interation term with Ũ [f. eq. (1.12)℄
Hqp,int = ŨΛ(N−1)/2 : d†↑d↑d

†
↓d↓ : (B.11)to the one-partile and two-partile exitation Eσ,σ′

pp , whih are alulated numerially inthe NRG, we have to use inverse of the basis transformation to the eigenstates in (B.10)
dσ =

(N+2)/2
∑

k=1

[ψp,k,σ(−1)pk,σ + ψh,k,−σ(−1)h†k,−σ]. (B.12)Then the orresponding to Ũσ,σ′

pp partile partile term is
d†↑d↑d

†
↓d↓ ∼

∑

k1,k2,k3,k4

ψ∗
p,k1,↑(−1)ψp,k2,↑(−1)ψ∗

p,k3,↓(−1)ψp,k4,↓(−1)p†k1,↑pk2,↑p
†
k3,↓pk4,↓.(B.13)If we only take into aount the single lowest one-partile exitation Ep,1,↑ and Ep,1,↓ (k1 =

k2 = k3 = k4 = 1) and the two-partile exitation E↑,↓
pp (N) the renormalised interation

Ũ↑,↓
pp (N) is seen to be inferred from (Hewson et al. 2004)
E↑,↓

pp (N) − Ep,↑(N) − Ep,↓(N) = Ũ↑,↓
pp (N)Λ(N−1)/2

∣

∣ψ∗
p,1,↑(−1)

∣

∣

2 ∣
∣ψ∗

p,1,↓(−1)
∣

∣

2
. (B.14)In a similar way we an look at partile-hole exitations E↑,↑

ph (a hole ↑ exitation or-responds to a partile ↓-exitation) to �nd an equation for the e�etive quasipartile-quasihole interation Ũ↑,↑
ph

E↑,↑
ph (N) −Ep,↑(N) − Eh,↑(N) = Ũ↑,↑

ph (N)Λ(N−1)/2
∣

∣ψ∗
p,1,↑(−1)

∣

∣

2 ∣
∣ψ∗

h,1,↑(−1)
∣

∣

2
, (B.15)and also for hole-hole exitations

E↓,↑
hh (N) − Eh,↓(n) − Eh,↑(N) = Ũ↓,↑

hh (N)Λ(N−1)/2
∣

∣ψ∗
h,1,↓(−1)

∣

∣

2 ∣
∣ψ∗

h,1,↑(−1)
∣

∣

2
. (B.16)For large N these quantities are seen to onverge to a ertain value whih is found to agree.We an therefore identify Ũ = Ũ↑,↓

pp = −Ũ↑,↑
ph = Ũ↓,↑

hh .





Appendix CRenormalised Perturbation TheoryIn this part of the appendix we give a few more additional details for the RPT approah.First, we give a proof that the theory is well de�ned order by order. Then we outline analternative formal desription, whih ould form the basis for alulations in the equilib-rium. We also desribe the formal setup of a self-onsistent theory based on the LuttingerWard funtional approah. In the last setion we give details for the extension of the RPTto the the non-equilibrium ase.The generating funtional for the renormalised perturbation theory is given by equation(2.42),
Zr[J ] =

∫

D(dr
σ , d

r
σ)e−Sr [dr

σ ,d
r
σ]−Sc[dr

σ ,d
r
σ]−SJ [dr

σ,d
r
σ ]. (C.1)The renormalised parameter ation Sr is given in the earlier equation (2.43), the ationfor the ounter-terms is given in (2.45) and the one-partile irreduible (1PI) soure termis de�ned as in (2.47). This was used to generate the perturbation theory as in equation(2.52). First we give a proof that the RPT approah an be arried out order by order.C.1 Proof for the feasibility of the RPT approahWe want to prove generally that a renormalised perturbation theory as de�ned by (C.1)an be arried out order by order. We need to prove that the renormalisation onditions(2.40) and (2.41) an always be satis�ed. This proof is arried out by indution. As apreliminary it is helpful to lassify the ontributions to the proper self-energy into threedi�erent types, as done before in the main text:

• (a) terms ΣŨ (iωn) oming purely from AIM interation term e−Sr

Ũ . They orrespondto the diagrams in the standard perturbation theory of the AIM.
• (b) terms oming purely from e−Sc

0 , whih orrespond to trivial ounter-terms whihan be olleted to a self-energy ontribution Σct(iωn) = −[λ1 + λ2iωn℄.
• () mixed terms Σmix

λ1,λ2,λ3
(iωn) generated by the ombination e−Sr

Ũ , e−Sc
0 , and e−Sc

λ3 .



164 Renormalised Perturbation TheoryThe perturbative renormalised self-energy to order n is given by
Σ̃(n)(iωn) =

n
∑

k=1

[

∑

m

Σ
(k,m)

Ũ
(iωn) +

∑

m

Σ
mix,(k,m)
λ1,λ2,λ3

(iωn)
]

+ Σct(iωn), (C.2)where Σ(k,m) denotes the mth diagrammati ontribution to the self-energy of order k. Wehave omitted the spin index for notational simpliity.In order to lassify di�erent orders of the perturbation theory it is useful to think ofthe ounter-term parameters as expanded in Ũ (Hewson 2001),
λi =

∑

k

λ
(k)
i Ũk. (C.3)Then for eah order of the perturbation theory we have to determine the oe�ients λ(n)

iin this expansion, suh that (2.40) and (2.41) are satis�ed, whilst all mixed terms forthe renormalised self-energy are inluded. Note that the mixed terms for a diagrammationtribution to order n have generally a prefator of the form
Ũ

m0+
3

P

i=1

n
P

mi=1
mil

(mi)
i

3
∏

i=1

(λ
(mi)
i )l

(mi)
i , (C.4)where l(mi)

i ∈ N0 has to be hosen suh that it gives the number of times a ounter-termontribution of type i of the order mi in Ũ appears in the diagram; m0 gives the orderfrom the standard AIM perturbative expansion in Ũ orresponding to (a). For a diagramof order n we need to have the ondition
m0 +

3
∑

i=1

n
∑

mi=1

mil
(mi)
i = n (C.5)Note that l(n)

i = 0 for i = 1, 2, and therefore to order n the terms λ(n)
1 and λ(n)

2 only appearin the last term Σct in (C.2).Similarly, we an lassify the di�erent ontributions to the full renormalised vertexat zero frequeny Γ̃(0), where we use a simpli�ed notation here. We have terms Γ̃Ũ (0),suh as in (a) above, whih ome from e−Sr

Ũ only. For later onveniene let us take the�rst order term, whih is just equal to Ũ , separately. We also take the equivalent termfor λ3 separately. As in () above we have mixed terms from original and ounter-termontributions, whih we denote by Γ̃mix
λ1,λ2,λ3

(0). They will generally have the same prefatoras in (C.4), but here we have mi ∈ [0, n−1] for i = 0, 1, 2, 3, sine we have taken out the Ũand λ3 term. The full renormalised vertex at zero frequeny to order n > 1 is then givenby
Γ̃(n)(0) = Ũ + λ3 +

n
∑

k=2

[

∑

m

Γ̃
(k,m)

Ũ
(0) +

∑

m

Γ̃
mix,(k,m)
λ1,λ2,λ3

(0)
]

, (C.6)



C.1 Proof for the feasibility of the RPT approah 165where similar to the ase of the self-energy Γ̃(k,m) denotes the mth diagram of order k.This is all the notation we need in the following.To prove the indution step, n− 1 → n, we will assume that for an RPT to order n− 1in Ũ all onstants λ(k)
i , k < n have been determined suh that the renormalised self-energyand vertex satisfy the renormalisation onditions, i.e.,

Σ̃(n−1)(0) = 0,
∂

∂iω
Σ̃(n−1)(iω = 0) = 0 (C.7)and

Γ̃(n−1)(0) = Ũ . (C.8)Now for order n one has to determine all diagrams of type (a) and () for the self-energyand vertex. These quantities to order n are then given by equation (C.2) and (C.6),respetively. The renormalisation ondition for the vertex (2.41) reads
Ũ +

n
∑

k=1

λ
(k)
3 Ũk +

n
∑

k=1

[

∑

m

Γ̃
(k,m)

Ũ
(0) +

∑

m

Γ̃
mix,(k,m)
λ1,λ2,λ3

(0)
]

= Ũ . (C.9)Note that only the seond term ontains λ(n)
3 and no term here an ontain λ(n)

1 or λ(n)
2 .Now, aording to the assumption of the indution, the ounter-term parameters λ(k)

i for
k < n have been hosen suh that (C.8) is satis�ed, whih implies that all terms with
k < n vanish. This yields the equation

λ
(n)
3 Ũn +

[

∑

m

Γ̃
(n,m)

Ũ
(0) +

∑

m

Γ̃
mix,(n,m)
λ1,λ2,λ3

(0)
]

= 0. (C.10)All parameters entering the seond and third term in this equation have been spei�ed for
k < n and thus (C.10) yields a unique solution for λ(n)

3 , provided that all diagrams havebeen evaluated. Similarly, we onsider the �rst ondition for the renormalised self-energy(2.40), whih reads
0 = Σ̃(n)(0) =

n
∑

k=1

[

∑

m

Σ
(k,m)

Ũ
(0) +

∑

m

Σ
mix,(k,m)
λ1,λ2,λ3

(0)
]

+
n
∑

k=1

λ
(k)
1 Ũk (C.11)Note that the mixed terms do not ontain λ(n)

1 or λ(n)
2 , but they an ontain a term with

λ
(n)
3 , whih has been determined from (C.10). Aording to the indution assumptionterms for k < n are hosen suh that (C.7) is satis�ed, and therefore all terms for k < nanel, whih leaves us with

0 =
[

∑

m

Σ
(n,m)

Ũ
(0) +

∑

m

Σ
mix,(n,m)
λ1,λ2,λ3

(0)
]

+ λ
(n)
1 Ũn. (C.12)This uniquely determines λ(n)

1 . A similar argument holds for the seond part of the renor-malisation ondition (2.40) to determine λ(n)
2 , whih onludes the indution step. For theproof it only remains to be shown that the ase n = 1 an be satis�ed, whih we haveillustrated as one of the examples in setion 2.2.2. We an therefore onlude at this stagethat it is possible to arry out this RPT to any given order n.



166 Renormalised Perturbation TheoryC.2 Alternative Setup for the RPTWe gave a formulation of how to generate a perturbation theory based on taking all ounter-terms as interations in hapter 2. A di�erent formulation will be illustrated here, whereterms of similar kind are olleted. Starting again from (C.1) we an reformulate the theoryslightly,
Zr[J ] =

∫

D(dr
σ, d

r
σ)e

−Sr
0 [dr

σ,d
r
σ ]−Sr

Ũ
[dr

σ ,d
r
σ]−Sc

0[dr
σ,d

r
σ ]−Sc

λ3
[dr

σ ,d
r
σ ]−SJ [dr

σ,d
r
σ ] (C.13)

= e
−Sr

(Ũ+λ3)
[δJσ ,δ

Jσ
]
∫

D(dr
σ, d

r
σ)e−Sr

0 [dr
σ,d

r
σ ]−Sc

0[dr
σ,d

r
σ ]−SJ [dr

σ ,d
r
σ] (C.14)

= e
−S(Ũ+λ3)[δJσ ,δ

Jσ
]Zr

0 [J ]. (C.15)We have olleted the interation terms orresponding to Ũ and λ3 as they are of iden-tial form, and did not treat the free ounter-terms as interation terms. The Gaussianintegration gives similar as before
Zr

0 [J ] = e
−

P

σ

β
R

0

dτ
β
R

0

dτ ′ Jσ(τ)Gr
σ,λ1,λ2

(τ−τ ′)Jσ(τ ′)
, (C.16)where

Gr
σ,λ1,λ2

(τ − τ ′) = [G−1
0 (τ − τ ′) + [Gc,0

σ (τ − τ ′)]−1]−1 (C.17)The free ounter-terms are inluded in the propagator, whih now takes the general form
Gr

σ,λ1,λ2
(τ − τ ′) =

1

β

∑

n

e−iτωn
1

iωn − ε̃d,σ −Kr
σ(iωn) + λ1 + λ2iωn

. (C.18)As an be seen from the generating funtional (C.15) the perturbation expansion is easiernow onsisting only of the terms, whih were mentioned above under (a). These are theterms of the standard perturbation theory for the AIM. We denote these terms, whihthrough the propagator depend on the ounter-term onstants by Σ(Ũ+λ3)
(iωn, λ1, λ2).The Dyson equation for this setup reads

Gd,σ(iωn)−1 = Gr
d,σ(iωn)−1 − Σ(Ũ+λ3)

(iωn, λ1, λ2). (C.19)Comparing with the earlier Dyson equation we an identify the renormalised self-energyin this sheme as
Σ̃(iωn) = Σ(Ũ+λ3)(iωn, λ1, λ2) − λ1 − λ2iωn (C.20)and the renormalisation onditions (2.40) beome self-onsisteny equations

λ1 = Σ(Ũ+λ3)(0, λ1, λ2) (C.21)and
λ2 =

∂

∂iω
Σ(Ũ+λ3)

(iω = 0, λ1, λ2). (C.22)



C.3 Funtional integral desription in the 2PI formalism 167The renormalisation ondition for the vertex remains the same (2.40) taking into aountthat all propagators are given by (C.18) and the interation is Ũ + λ3.Although suh a setup at �rst sight appears promising due the muh simpler strutureof the perturbation expansion it turns out that it is di�ult to arry out the expansion inthis form. We had seen that the ounter-term parameters inlude ontributions to di�erentorder [f eq. (C.3)℄. The setup de�ned by (C.15) and the free propagator (C.18) impliesthat ounter-term ontributions to all orders are inluded even in the low order diagramsdisussed in the last setion. They ould be expanded again in orders of Ũ , but that islike going bak to the earlier setion, or one has to devise a onsistent way of inludingdiagrams to all orders with these ounter-term ontributions. It turns out that these anin fat be done better in a frame work where also the renormalised self-energy is inludedin the propagators, or in other words the expansion is arried out in terms of the fullpropagators. This is then neessarily a self-onsistent theory. The natural formalism forsuh an approah is the formulation in terms of a Luttinger Ward funtional and the 2PIsheme, whih will be desribed in the following setion.C.3 Funtional integral desription in the 2PI formalismThe generating funtional for the renormalised theory in the two-partile irreduible (2PI)sheme is given by
Zr[η] =

∫

D(dr
σ, d

r
σ)e−Sr [dr

σ,d
r

σ ]−Sc[dr
σ,d

r

σ ]−Sη[dr
σ ,d

r

σ], (C.23)with the renormalised ation Sr as in equation (2.43) and the ation for the ounter-termsas in (2.45). The di�erene to the earlier ase is the soure term, whih is de�ned by
Sη =

∑

σ,σ′

β
∫

0

dτ

β
∫

0

dτ ′ d
r
σ(τ)ησ,σ′(τ, τ ′)dr

σ′(τ ′). (C.24)We an de�ne a generating funtional for onneted Green's funtions,
W r[η] = logZr[η]. (C.25)The onneted n-partile renormalised Green's funtion is obtained via

G
r,(n)
σ1,...σn;σ′

1,...σ′
n
(ω1, . . . ωn;ω′

1, . . . ω
′
n) = ζn δ2nW r[η]

δησ′
1,σ1

(ω′
1, ω1) . . . δησ′

n,σn
(ω′

n, ωn)

∣

∣

∣

∣

∣

η=0

. (C.26)We an write
− δW r[η]

δησ′,σ(ω′, ω)
= −〈dr

σ′(ω′)dr
σ(ω)〉η = 〈dr

σ(ω)d
r
σ′(ω′)〉η = Gr

σ,σ′(ω, ω′), (C.27)



168 Renormalised Perturbation Theoryby whih the generalised Green's funtion Gσ,σ′(ω, ω′) is de�ned. It is suitable to performa Legendre transform to a new generating funtional Γr[Gr],
Γr[Gr] =

∑

σ,σ′,n,n′

Gr
σ,σ′(iωn, iω

′
n)ησ,σ′(iωn, iω

′
n) −W r[η], (C.28)whose natural variable is Gr

σ,σ′(iωn, iω
′
n). This funtional generates proper vertex funtions(Negele and Orland 1988). By funtional di�erentiation we �nd

δΓr[Gr]

δGr
σ,σ′ (ω, ω′)

= −ησ,σ′(ω, ω′) (C.29)For a non-interating theory, Ũ + λ3 = 0, we an give an exat expression for thegenerating funtional Γ0,r[Gr], sine the integrals are Gaussian and an be arried outexatly. We �nd,
Γr,0[Gr] =

∑

σ,σ′,n,n′

[logGr
σ,σ′(iωn, iω

′
n) + 1 − ([Gr,0

σ (iωn)]−1 + [Gc,0
σ (iωn)]−1)Gr

σ,σ′(iωn, iω
′
n)].(C.30)Note that

δΓr,0[Gr]

δGr
σ,σ′ (iωn, iω′

n)
= [Gr

σ,σ′(iωn, iω
′
n)]−1 − ([Gr,0

σ (iωn)]−1 + [Gc,0
σ (iωn)]−1). (C.31)In the interating theory we an express the e�etive potential as

Γr[Gr] = Γr,0[Gr] + Φr[Gr], (C.32)with an additional funtional Φr[Gr], whih turns out to be the Luttinger Ward funtional
Φr

LW[Gr] (Luttinger and Ward 1960, Abrikosov et al. 1963). It is well known and an beexpressed diagrammatially in terms of losed skeleton diagrams. Its funtional derivativesyield self-energy and irreduible vertex funtions (Abrikosov et al. 1963). Note that theexpansion is arried out with the e�etive interation Ũ1 ≡ Ũ +λ3 as expansion parameteras the interation terms of the same struture have been olleted again.In this approah the renormalised Green's funtion is a variable. The physial Green'sfuntion, whih orresponds to the stationary point of the funtional Γr[Gr], when thesoure is zero, satis�es the Dyson equation, whih for the renormalised theory reads,
Σ̃σ(iωn) = [Gr,0

σ (iωn)]−1 − [Gr
σ,σ(iωn, iωn)]−1. (C.33)In the stationary state invoking η = 0 in equation (C.29) we �nd therefore using (C.31)that the renormalised self-energy Σ̃σ(iωn) is given by

Σ̃σ(iωn) =
δΦr[Gr]

δGr
σ,σ(iωn, iωn)

− [Gc,0
σ (iωn)]−1 (C.34)Note that expliitly we simply have [Gc,0

σ (iωn)]−1 = λ1iωn + λ2.



C.3 Funtional integral desription in the 2PI formalism 169We an now give the renormalisation onditions (2.40) and (2.41) in terms of theLuttinger Ward funtional Φr[Gr]. The equations (2.40) for the renormalised self-energyread
δΦr[Gr]

δGr
σ,σ(0, 0)

− [Gc,0
σ (0)]−1 = 0 (C.35)and

∂

∂iω

( δΦr[Gr]

δGr
σ,σ(iω, iω)

− [Gc,0
σ (iω)]−1

)

∣

∣

∣

∣

η=0,ω=0

= 0. (C.36)These equations determine λ1 and λ2. It is onvenient to de�ne the self-energy Σr
σ(iωn),whih is obtained from the perturbation expansion of Φr[Gr],

Σr
σ(iωn) =

δΦr[Gr]

δGr
σ,σ(iωn, iωn)

. (C.37)The full retarded Green's funtion an therefore also be written as
Gr

σ(iωn) =
zσ

iωn − ε̃d,σ + i∆̃ + λ1iωn + λ2 − Σr
σ(iωn)

. (C.38)In a self-onsistent perturbative approah with (C.38) the self energy Σr
σ(iωn) dependson the three renormalisation parameters λi, and the renormalisation onditions (C.35) and(C.36) are additional self-onsisteny equations

Σr
σ(iωn = 0, λ1, λ2, λ3) = λ2 (C.39)and

∂

∂iω
Σr

σ(iω, λ1, λ2, λ3)|ω=0 = λ1. (C.40)The ondition (2.41) for the vertex has to be found by onsidering the partile holeirreduible vertex Ĩph,
Ĩσ3,σ4
σ1,σ2

(ω1, ω2, ω3, ω4) =
δ2Φ[Gr]

δGr
σ3,σ4

(ω3, ω4)δGr
σ1,σ2

(ω1, ω2)

∣

∣

∣

∣

η=0

(C.41)In the partile hole hannel this is related to the full renormalised vertex Γ̃ through theBethe Salpeter equation
Γ̃σ3,σ4

σ1,σ2
(ω1, ω2, ω3, ω4) = Ĩσ3,σ4

σ1,σ2
(ω1, ω2, ω3, ω4) (C.42)

+
∑

ω′
2,σ′

2,σ′
4

Ĩ
σ3,σ′

4

σ1,σ′
2
(ω1, ω

′
2, ω3, ω

′
2 + ω3 − ω1)G

r
σ′
2
(ω2)G

r
σ′
4
(ω′

2 + ω3 − ω1) ×

× Γ̃
σ′
4,σ4

σ′
2,σ2

(ω′
2, ω

′
2 + ω3 − ω1, ω3, ω4).This equation is represented graphially in �gure C.1, where also the assignment of externalfrequenies is visible.
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PSfrag replaements
ω1, σ1ω1, σ1ω1, σ1 ω2, σ2ω2, σ2 ω2, σ2

ω3, σ3ω3, σ3ω3, σ3 ω4, σ4ω4, σ4ω4, σ4

Figure C.1: Bethe Salpeter equation for full renormalised vertex Γ̃ (box) expressed throughthe renormalised partile-hole irreduible vertex Ĩph (irle) and full renormalised Green'sfuntion Gr (double line).The renormalisation ondition (2.41) is then given by
Γ̃σ,−σ

σ,−σ(0, 0, 0, 0) ≡ Γ̃σ,−σ(0, 0) = Ũ . (C.43)This equation determines λ3.An RPT in this sheme an be spei�ed entirely by an approximation to the LuttingerWard funtional. From this the self-energy, the irreduible and full vertex an be alulatedin terms of the full propagators and one has to iterate for self-onsisteny adjusting theounter-term parameters. Though in priniple possible this approah is - even for simpleapproximations of the LW funtional - di�ult to arry out sine the alulation of thefull vertex with the Bethe-Salpeter equation is numerially umbersome. Usually we aremainly interested in the renormalised self-energy and only really need the full vertex at zerofrequeny in order to satisfy the renormalisation ondition. Therefore, we are alulatingmuh more than we atually need in suh an approah. A possibility to irumvent thisadditional e�ort is not to alulate the full vertex with all the dynami dependene, butrather relate it to the self-energy via a Ward identity. This might be a promising routefor future developments of the RPT, whih at the time of writing has not been exploredin detail.C.4 Non-equilibrium renormalised perturbation theoryHere we generalise the setup of the renormalised perturbation theory from hapter 2 tothe non-equilibrium ase, whih is the subjet of hapter 4. The renormalised parametersare de�ned for zero temperature and in the equilibrium limit, eV → 0. The matrix Dysonequation (4.12) simpli�es then to an equation for the (−−) omponent,
G−−

d,σ (ω)−1 = G
(0),−−
d,σ (ω)−1 − Σ(−−)

σ (ω), (C.44)where
G

(0),−−
d,σ (ω)−1

∣

∣

∣

eV =0
= ω − εd,σ + i∆sgn(ω) (C.45)and

Σ(−−)
σ (ω) = θ(ω)Σret

σ (ω) + (1 − θ(ω))Σadv
σ (ω). (C.46)



C.4 Non-equilibrium renormalised perturbation theory 171We an therefore fous on the equilibrium retarded self-energy Σret
σ (ω) [Σadv

σ (ω) = Σret
σ (ω)∗℄and arry out the usual Fermi liquid expansion. As seen in hapters 2 and 3 for theequilibrium RPT it is useful to inlude the magneti �eld dependene in the self-energy,whih we will do for the following de�nitions, whih essentially oinide with (2.33) and(2.34) with Σσ(ω) → Σret

σ (ω) . Hene, with
zσ(h)−1 = 1 − ∂ReΣret

σ (0, h)

∂ω
, (C.47)the renormalised parameters are given by

∆̃σ(h) = zσ(h)∆, ε̃d,σ(h) = zσ(h)(εd,σ + ReΣret
σ (0, h)), (C.48)The remainder of the self-energy Σrem

σ (ω, h) de�nes the retarded renormalised self-energy
Σ̃ret

σ (ω, h) [f. (2.35)℄,
Σ̃ret

σ (ω, h) = zσ(h)Σrem
σ (ω, h). (C.49)The renormalised interation Ũ(h) is de�ned as in equilibrium by the e�etive quasipartileinteration of the problem, whih is given by the full renormalised four point vertex funtionat zero frequeny (2.37).These renormalised parameters, whih are the same ones as in the equilibrium RPT,are used for the low energy desription of the non-equilibrium systems by replaing theoriginal parameters. The e�etive ation beomes S̃ = S̃0 + S̃Ũ with

Sr
0 =

∑

σ

∞
∫

−∞

dt

∞
∫

−∞

dt′ d
r
σ(t)G̃

(0)
d,σ(t− t′)−1dr

σ(t′) (C.50)where dr
σ(t) := t(dr

σ,−(t), dr
σ,+(t)), dr

σ,ν(t) = dσ,ν(t)/
√
zσ , and

G̃
(0)
d,σ(t− t′)−1 =

1

2π

∫

dω G̃
(0)
d,σ(ω)−1e−iω(t−t′).We have

G̃
(0)
d,σ(ω) =

(

G̃
(0),−−
d,σ (ω) G̃

(0),−+
d,σ (ω)

G̃
(0),+−
d,σ (ω) G̃

(0),++
d,σ (ω)

)

, (C.51)where the matrix elements are given by [f. (4.8)-(4.10)℄
G̃

(0),−−
d,σ (ω) =

ω − ε̃d,σ − i∆̃σ(1 − 2feff(ω))

(ω − ε̃d,σ)2 + ∆̃2
σ

, (C.52)
G̃

(0),−+
d,σ (ω) =

2i∆̃σfeff(ω)

(ω − ε̃d,σ)2 + ∆̃2
σ

, (C.53)
G̃

(0),+−
d,σ (ω) =

−2i∆̃σ(1 − feff(ω))

(ω − ε̃d,σ)2 + ∆̃2
σ

, (C.54)



172 Renormalised Perturbation Theoryand G̃(0),++
d,σ (ω) = −G̃(0),−−

d,σ (ω)∗. The interation term reads
Sr

Ũ
= −Ũ

∞
∫

−∞

dt (nr
d,↑,−(t)nr

d,↓,−(t) − nr
d,↑,+(t)nr

d,↓,+(t)). (C.55)The renormalisation onditions for the renormalised retarded self-energy apply in the equi-librium limit, and are given as in (2.40) and (2.41). Generally in the Keldysh formalism,the retarded self-energy is given by
Σret

σ (ω) = Σ−−
σ (ω) + Σ−+

σ (ω). (C.56)In order to satisfy the renormalisation onditions (2.40) and (2.41) we have to inludethe ounter-term ation
Sc =

∑

σ

∞
∫

−∞

dt

∞
∫

−∞

dt′ d
r
σ(t)Gc,0

σ (t− t′)−1dr
σ(t′) (C.57)

+λ3

∞
∫

−∞

dt nr
d,↑,−(t)nr

d,↓,−(t) − nr
d,↑,+(t)nr

d,↓,+(t))

= Sc,0 + Sc
λ3

(C.58)where the matrix elements of Gc,0
σ are generally given by Gc,αβ

σ (ω)−1 = λαβ
2 ω + λαβ

1 .
Gc,αβ

σ (ω) ontains more degrees of freedom than needed for the renormalisation ondi-tions. We will fous only on the relevant ombinations for (2.40) and (2.41), and set allother λα,β
i zero.Perturbation expansion in 1PI formalismThe renormalised perturbation theory an be set up in the one-partile irrduible shemeas desribed in setion 2.2.2. The partition funtion of the model is then written as

Zr =

∫

D(dr
σ ,d

r
σ)ei(Sr [dr

σ,d
r
σ ]+Sc[dr

σ,d
r
σ ]). (C.59)A diagrammati expansion an be generated by inluding a one-partile (1PI) soure termof the form

SJ =
∑

σ,ν=±

∞
∫

−∞

dt (d
r
σ,ν(t)Jσ,ν(t) + h.c.) (C.60)

=
∑

σ

∞
∫

−∞

dt (d
r
σ(t) · Jσ(t) + h.c.). (C.61)The generating funtional is generally written as

Zr[J ] =

∫

D(dr
σ,d

r
σ)ei(Sr [dr

σ,d
r
σ]+Sc[dr

σ,d
r
σ]+SJ [dr

σ,d
r
σ]).



C.4 Non-equilibrium renormalised perturbation theory 173As before one obtains
Zr[J ] = e

iSr

(Ũ+λ3)
[δJσ,ν ,δ

Jσ,ν
]+iSc,0[δJσ,ν ,δ

Jσ,ν
]Zr

0 [J ] (C.62)where we have treated all ounter-terms as interation terms. By Gaussian integration wehave
Zr

0 [J ] = e
i

P

σ

∞
R

−∞

dt
∞
R

−∞

dt′ Jσ(t)G̃
(0)
d,σ(t−t′)Jσ(t′)

.The onneted Green's funtions is formally obtained from
Gα1,α2

σ1σ2
(t1, t2) =

δ2 logZr[J ]

δJσ1,α1(t1)δJσ2,α2(t2)

∣

∣

∣

∣

J=0

. (C.63)A diagrammati perturbation expansion is obtained by expanding the exponential funtionsas explained in hapter 2 and follows from analogous arguments. One only needs to bearin mind the matrix struture of the theory, whih aounts for the additional degrees offreedom. We are mainly interested in alulating the retarded renormalised self-energy(C.56). Therefore, we an fous on the ombinations λret
i ≡ λ−−

i + λ−+
i for the ounter-terms and in the simplest ase determine the value diretly by the renormalisation ondition(2.40),

λret
1 = Σr,−−

σ (0) + Σr,−+
σ (0) (C.64)and

λret
2 =

∂

∂ω
(Σr,−−

σ (ω) + Σr,−+
σ (ω))

∣

∣

ω=0
, (C.65)where in all those equations we take the limit eV → 0. The voltage dependent renormalisedretarded self-energy is then given by

Σ̃ret
σ (ω, eV ) = Σr,−−

σ (ω, eV ) + Σr,−+
σ (ω, eV ) − λret

2 ω − λret
1 . (C.66)
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